

Elite Attitudes about International AI Regulation

Huimin Li, Terrence Chapman, Daniel L. Nielson*

June 2025

Abstract

The fast-moving artificial intelligence boom has generated many concerns, including (but not limited to) violations of privacy and appropriate usage of personal data, algorithmic bias and discrimination, displacement of human workers, and a general lack of transparency of AI processes. With these concerns come calls for government regulation, and given the transnational scope of digital business, that regulation may require international collaboration. Yet we know little about how business elites—who would be tasked with complying with regulations and who also operate businesses affected by the concerns raised above—think about what form that collaboration should take and what obligations it might entail. To better understand elite attitudes toward potential international AI regulation, we designed and fielded a conjoint experiment targeting firm managers (as well as higher executive job categories) in four countries: the U.S., the UK, France, and Germany. The survey experiment varies several potential attributes of hypothetical transnational AI regulation, including member parties, scope, targeted actors, depth of obligation, and size of bureaucracy. Contrary to expectations that managers of private businesses are generally wary of government regulation, we find that managers in our sample prefer encompassing regulation that includes inputs from multiple stakeholders and binding obligations on both private firms and government agencies.

*Ph.D. Candidate in Government, UT-Austin, huiminli@utexas.edu; Professor of Government, UT-Austin, t.chapman@austin.utexas.edu; Professor of Government, UT-Austin, dan.nielson@utexas.edu. We thank Stephen Chaudoin, Jonas Tallberg, Johannes Geith, and Mangus Lundgren for helpful comments and suggestions. This study was pre-registered with Open Science Framework on January 23, 2024, under the title “Elite and Citizen Preferences for International AI Governance.”

The release of ChatGPT4 in 2023 hastened a growing call for regulation of artificial intelligence (AI). Those clamoring for legislation to address challenges and threats from AI represent a set of strange bedfellows: privacy and anti-discrimination activists have joined tech moguls such as Elon Musk and more populist-minded politicians critical of censorship of conservative ideas in calls to impose a range of regulations on this fast-developing technology. The task, however, seems Herculean, as the target is moving more rapidly than governments can track. The range of issues such regulation might address is broad and varied, while the actual means to rein in AI applications remain elusive. Who should be the “locus” of regulation, governments or private sector actors? Who should be responsible for the design, implementation, and enforcement of the rules? How can regulations simultaneously address privacy, nondiscrimination, responsible usage, consumer rights, and even more dire existential concerns while not stifling innovation? Moreover, should the responsibility to regulate AI fall on national governments, or should states throw their weight behind international forms of collaborative regulation, given the scope—and continued pace—of digital globalization?¹

This study is an attempt to understand how actors involved in the actual industries using AI view these issues. We fielded four online conjoint experiments in the U.S., France, Germany, and the U.K. in the summer of 2024, aimed at assessing the broad design features business managers and executives prefer in hypothetical international AI regulation. We take inspiration from the theoretical frameworks about the design of international law and institutions advanced by Goldstein et al. (2000), Koremenos et al. (2001), and others, and randomize potential regulatory characteristics in several conjoint tasks. Specifically, we randomize the categories of actors involved in regulatory governance (private firms, NGOs, governments, or all of the above); whether such regulation should address specific harms or cover all uses of the technology; whether the regulation should involve binding or voluntary rules; whether the regulation should target private actors, government agencies, or both; and

¹See Weymouth 2023 on the politics of digital globalization.

whether the regulatory initiative should be centered in a large international bureaucracy or a small secretariat.

After asking respondents to compare regulatory proposals, we ask them about their willingness to support international collaboration to regulate AI, as well as their willingness to engage in political actions, such as signing a petition to be sent to government representatives urging their government to take the lead in international efforts to form a regulatory regime, or using a prepared email template to contact their representatives to urge them to support legislation to address AI concerns.

We are also interested in studying how priming specific concerns about AI interact with the randomly assigned features of the possible AI regulatory apparatus. Our survey thus includes a preamble randomly citing algorithmic transparency, data privacy, bias and discrimination, replacement of human workers, or all four concerns. Several of these concerns, of course, overlap, but our interest is in determining whether “activating” specific issues by bringing them directly to subjects’ attention affects their preferences over international regulation and its forms.

Our results suggest that, contrary to literature describing private-actor antipathy to government regulation, or a strong preference for preemptive self-regulation, we find that firm managers and executives prefer broad and binding limitations on the use of AI technology.² Firms’ executives and managers across our four country samples tend to prefer regulation that applies to both private actors and government agencies, and they desire any transnational governance efforts to involve input from multiple stakeholders, including NGOs, businesses, and governments. They display no statistically significant preferences for whether such regulatory efforts should be headquartered in a small secretariat compared to a large international bureaucracy. We also found little to no effect of priming specific AI concerns on these attitudes.

Our study provides new information about elite preferences over international governance

²These results contradicted the study’s pre-registered hypothesis.

of AI. In doing so, it helps answer the call of Tallberg, Erman, et al. (2023) and others to devote more attention to the emerging forms of AI governance as well as how actors view the normative issues surrounding the application and regulation of AI. Our study is also relevant for ongoing discussions about AI governance. These have tended to be dominated by the executives of large tech corporations, who expend considerable resources lobbying governments and engaging in consultations about the nature of AI regulation. These actors are responsible for creating AI tools and algorithms, but many other types of business actors are users of these tools, and in some cases will be held accountable for their use.³ And, unlike previous rounds of technological automation that primarily affected low-skilled labor, many high-skilled workers potentially face displacement with the integration of AI systems that can write legal briefs, perform radiological diagnoses, or analyze large amounts of data autonomously, among other functions. The preferences of these individuals should therefore be relevant to policy discussions and transnational government proposals.

Background on AI Regulation

Although 2023 was the year AI surged into mainstream conversation, various forms of digital automation have existed for years and countries began a number of regulatory initiatives in the late 2010s. These initiatives range widely in terms of their scope and enforceability, and they aim at addressing a variety of concerns about the application of AI technology. Acemoglu (2021) focuses on three specific classes of concerns with AI: the collection and use of personal information, labor displacement, and altered forms of communication and persuasion that pose threats to democratic processes. Acemoglu (2021) argues that while AI is not destined to produce large societal problems in these areas, it has the potential to do so without proper regulation. However, as with many new issue areas, the devil is in the details when it comes to devising effective regulatory architecture. Current attempts fall

³See Soder et al. (2025) on debates about the locus of responsibility for AI harms and risk.

into at least three broad categories.⁴

The first might be called the “European” model, which sees protection from harm as an important government function. It advocates for aggressive and binding regulatory rules. Yet, given the wide application of AI technology, even much of this regulation is conceived in very broad, abstract terms. Rules adopted under legislation such as the EU Artificial Intelligence Act focus on minimizing risk and restricting the use of the highest-peril applications among firms. National governments are also tasked with enforcing AI rules, both passing national law and bringing enforcement actions against firms. This European model is the most far-reaching approach to regulating AI and, although its proponents often acknowledge the need for regulatory efforts to avoid unduly hampering innovation, foresees a robust role for governments in deciding which uses pose the greatest risks to society.

The second model might be called the “minimalist” approach, combining public-private partnerships and mostly voluntary compliance with transparency rules. This characterizes the U.S. government’s regulatory initiatives to date. This approach consciously attempts to balance incentives for productive innovation and development of technology with protection from harm, but delegates much of the “how” question to firms themselves. Indeed, many in Silicon Valley have called for this type of voluntary self-regulation. This is not surprising, given that firms often opt for “self-policing” and risk minimization in order to deter overly burdensome government regulation (DeMarzo et al. (2005); Héritier and Eckert (2008)). But tech moguls—and the workers developing AI—seem somewhat split on the correct balance of innovation and cautionary procedures. For instance, in 2024 Elon Musk openly called for a moratorium on the development of new AI technology, while others have scoffed at such calls. The public battle over the initial ouster, and later reinstatement, of OpenAI’s Sam Altman also seemed to reflect an internal debate about the rate of innovation versus the need for corporate accountability.

The third approach, which some label the “Chinese” model, involves heavy government

⁴Cf. Bradford (2023).

involvement in regulation, but instead of aiming to minimize societal harm, its goal seems to be minimizing the private sector's independent control over AI applications. Further, it appears geared toward fostering AI applications aimed at maintaining social order (Zeng (2020)), such as facial recognition and surveillance programs. In fact, many forms of AI surveillance technology, used by governments and law enforcement agencies around the world, are manufactured in China by firms with close connections to the Chinese Communist Party (CCP). This authoritarian model prioritizes government access to new technologies as well as political and social order.

To date, there is very little consensus on international standardization beyond the EU. This is likely due to a number of factors. Western European countries are often considered more open to government intervention in the economy than the U.S. The “varieties of capitalism” literature, for instance, discusses the close linkages between governments, industry associations, and business among corporatist economies that are characterized by many elements of free-market capitalism but with government consultation and intervention and are more common in Western Europe (Hall, Soskice, et al. 2001). The United States historically, and especially after broad deregulatory efforts starting in the 1980s, has been comfortable with less direct government intervention in the economy, particularly when that intervention could slow innovation. Likewise, in more authoritarian settings, governments routinely act without substantial input from civil society. The state typically has the power to adopt or erase regulations as it sees fit, and its regulatory goals emanate from the broader goals of the government, which may range from promoting growth to suppressing dissent.

As mentioned above, China aspires to rival the U.S. in terms of AI innovation and development. And more broadly, China has achieved remarkable growth since the late 1980s through a strategy that began to embrace capitalism and integration with global markets. No doubt business interests have been important partners in developing and furthering this strategy. But the Chinese government retains substantial leverage over Chinese businesses, and at present, they have little reason to push for regulatory standardization across coun-

tries. Much like a classic prisoner’s dilemma, binding oneself to socially conscious AI policy, while rivals eschew such binding rules, would put China at a competitive disadvantage.

Theories of International Cooperation and AI Regulation

Although AI is an emerging technology with broad applications, it is helpful to consider the incentives for states and non-state actors with respect to global regulation.⁵ In particular, there are at least two central considerations states face when pursuing international cooperation in AI governance. The first is the efficiency gains from coordination, and a related concern that foreign firms not be held to more lax standards and thus gain a competitive advantage. The second involves the way geopolitical competition, particularly between the U.S. and China, shapes incentives for cooperation and the desire to promote innovation and growth from domestic firms and multinationals.

Scholars have long held that states create international institutions to coordinate policy in areas where there is a possibility for mutual gains (Keohane 2005, Mattli and Büthe 2003). Since many uses of AI are “borderless” or involve firms engaging in trade in goods or services or who invest abroad, it would seem a natural area for the coordination of national policies. However, as noted above, states vary in their existing regulatory models, likely owing to a mix of domestic interests, policy-making processes, and the desire of the wider public for government intervention. At the same time, AI has the potential to radically disrupt economies, and that disruption may generate considerable economic growth (Agrawal et al. 2022, Acemoglu and Restrepo 2018, Acemoglu and Restrepo 2019). This means that while international coordination might create efficiency gains for firms and states, governments also want to ensure that any regulatory framework does not put their firms at a competitive disadvantage or prevent the development of growth-enhancing technologies. Variation in state-level enforcement of regulatory rules, for one, might lead to firms from strong-enforcement states

⁵Tallberg, Erman, et al. 2023 provides a review of traditional theories of international cooperation and how they might be applied to AI governance.

to face obstacles that others do not (e.g. Chapman et al. 2020). Coordination problems also tend to be plagued by disagreements about the nature or design of coordinated policies, with power often becoming the ultimate arbiter (Mattli and Büthe 2003).

For these reasons, geopolitical competition is likely to shape preferences for international AI regulation. In particular, the rivalry between the United States and China for global influence may limit the possible scope of cooperation, as both vie to become dominant players in AI. Any efforts to create an international regime aimed at setting rules or standards for AI will have to carefully navigate this great-power competition. Yet it is unclear whether these concerns filter down to firms themselves. They certainly have agendas quite separate from the governments within whose jurisdictions they operate. To the extent that firms are concerned about geopolitical rivalry, they are more likely to be attuned to rules that govern the import/export of this technology, intellectual property rights protections, and regulations that enable a level playing field (or tilt the field in favor of firms of their nationality).

Thus, although geopolitical rivalry will undoubtedly loom in the background of efforts to regulate artificial intelligence technology, the structure of the cooperation problem appears more akin to a coordination dilemma. In such a setting, actors agree on the need for coordination, but disagree on the specific features of that coordination. For instance, should transnational AI regulations follow an American, European, Chinese, or other model? Here, firms face obstacles to navigating different rules across national jurisdictions and, all else equal, may prefer to face a unified set of rules that apply to their counterparts of different nationalities. Yet the governments that represent these firms, and the firms themselves, will likely disagree as to what form regulation should take. In many cases, the solution to these dilemmas comes down to bargaining power (e.g. Gruber (2000)). However, others suggest that institutional details matter. For example, Mattli and Büthe (2003) examines how existing national regulations possess “complementarities” that result in their favored arrangement.

Cooperation may take many possible forms. There have been several attempts to for-

mulate conceptual frameworks for characterizing international institutions and law, such as the "rational design project" (Koremenos et al. 2001). In terms of gauging preferences over rules, however, we take inspiration from—but do not adopt the exact categories—put forth by Goldstein et al. (2000). Specifically, we focus on five dimensions of potential transnational governance over AI: membership, or which actors will participate in the regulatory framework; scope, or whether the regulatory initiative will focus on a specific concern surrounding AI or a broad list of issues; bindingness, or whether the rules of the regulatory initiative will be considered binding on all members or voluntary; the targets of regulatory action, or whether the regulation should apply to private actors/firms, government agencies, or both; and organization, or whether the regulations should be managed by a large international bureaucracy or by a small secretariat.⁶ While there are a variety of other issues involved in AI regulation, from the broad to the very specific, any transnational regulatory framework will have to settle on these basic design features. These design features are likely to be the most accessible and understandable to a broad range of political actors. The effectiveness of international regimes also relies on their legitimacy, which is often a function of inclusiveness and fairness of processes (Tallberg and Zürn 2019). These dimensions help shape views about these characteristics.

Societal and Firm Preferences over AI Regulation

What do firm managers want with respect to AI regulation? Despite the scramble to establish regulatory frameworks for AI, there is surprisingly little research on this question. In one of the first studies of non-state actor preferences, Tallberg, Lundgren, et al. (2024) examine public consultations on the EU AI Act, finding that while a wide swath of non-state actors express concern about developments in AI, business actors prefer looser rules and favor more incentives for innovation relative to others, and this difference is greater in countries with

⁶These correspond roughly to Goldstein et al. (2000)'s categories of scope, precision, obligation, and delegation. We include the additional category of members and targets, which speak to this specific regulatory area.

internationally competitive AI sectors. However, we still lack clear expectations for how firm actors view potential AI regulation, beyond the relatively simple “minimize risk” vs. “empower innovation” debates.

One reason for the lack of clear expectations, let alone empirical findings in this area, is that actors’ AI preferences do not easily map onto common frameworks for delineating societal actors’ preferences. AI is likely to be a shock to labor across many sectors and, unlike previous technological revolutions, may have its most pronounced dislocating effects on medium- and high-skilled labor. Experience from past labor shocks might anticipate a similar reaction to manufacturing automation, which pitted mostly low-skilled labor against firm executives attempting to streamline production and cut costs. In the case of AI, however, job categories that have traditionally been categorized as skilled labor will be threatened by dislocation. Many legal jobs, radiologists, data scientists, or even professors may find their positions replaced or partially outsourced to AI programs that can operate more efficiently and do not demand overtime pay or even any wages at all. We may observe an inverted aversion to automation, where jobs that cannot be done by anything other than physical human labor will be safe, whereas increasingly technical and white-collar jobs will be at risk with the AI revolution.

Raising another reason to doubt the applicability of canonical models of economic preferences to AI policy, recent work on societal preferences over economic policy finds that many traditional models no longer seem to be good descriptions of mass preferences (if they ever were).⁷ Instead, it seems that many actors take cues from elites, use informational shortcuts, and form opinions based on whether they believe a given economic policy is good for their social group or the wider country, rather than forming attitudes based on their ownership of factors of production or their sectoral location. Given the salience of AI developments, and considering that the average citizen even in countries with competitive technology sectors know little about the workings of AI technology, we might expect AI regulation to be an

⁷See Mansfield and Mutz 2009, Guisinger 2009, Guisinger 2017.

area in which attitudes are still very malleable. Because they are more likely to be users of AI and even make risk assessments about the adoption of new forms of the technology, elite preferences are likely to be somewhat more informed than non-elite attitudes and more specific to their job roles and industries.

A further consideration is the likely efficiency gains to firms from some form of international standardization. Firms that conduct a considerable amount of business abroad, especially if a large share of that business occurs in jurisdictions already heavily regulating AI usage such as the EU may especially favor coordination. Adopting business practices to multiple diverse regulatory contexts creates additional transaction costs, and firm managers with responsibility for streamlining operations may prefer broadly applicable and clear rules to a patchwork quilt of rules, standards, and recommendations that vary across country borders. Firms are also loath to be subject to regulations their competitors are not, which suggests actors within firms may prefer binding rules across state boundaries in order to maintain a level playing field.

When we move to the individual level, we expect those who are already attuned to news and debates about AI — and report higher levels of concern — to be more supportive of regulation. A large body of research suggests that individuals are more likely to approve of political interventions to deal with issues that they find more alarming.⁸ We therefore expect those who describe a high level of concern about AI technology to be more supportive of international initiatives to regulate the technology and to desire more encompassing rules to thinner institutional structures. At the same time, we expect private market actors in general to be wary of overregulation, though elites in businesses that conduct a significant amount of cross-border trade will be more acceptant of regulation, as it harmonizes expectations and reduces the transaction costs of navigating multiple jurisdictions. This line of reasoning leads to the following hypotheses:

- H1: Support for all forms of cooperation is more likely for respondents who describe

⁸See Albertson and Gadarian (2015) for a good review.

AI as more concerning on a scale from 0 to 10.

- H2: Support for greater levels of bindingness, inclusion of stakeholders, general principles, and for a larger international bureaucracy is more likely for respondents who describe AI as more concerning on a scale from 0 to 10.
- H3: Private firm managers in general are more likely to prefer non-governmental, private-sector based cooperation, with voluntary obligations.
- H4: Managers from firms that engage in significant amounts of cross-border trade, particularly trade in services, will prefer broader and more binding regulation.

Research and Experimental Design

To understand elite preferences over AI governance, we developed an experiment that combines conjoint elements with traditional randomized priming. We administered our survey to business managers from four countries: the United States, the United Kingdom, France, and Germany, using the survey company Cint to recruit subjects. Our final sample includes 719 respondents from the U.S., 758 from France, 733 from Germany, and 697 from the UK, for a total sample of 2907 respondents with the title of manager or higher within their firm. These countries vary on key dimensions that may influence elite views of international AI governance. The U.S. is at the forefront of the development of AI technology, yet so far has not participated in AI regulation beyond its own borders, though President Biden passed an Executive Order in October 2023 directing the State and Commerce Departments to begin talks with other countries to develop international rules and standards.⁹ France and Germany, central EU countries, on the other hand, are subject to more stringent regulations on digital privacy due to the EU General Data Privacy Regulation (GDPR) that entered into force in 2018. And in March 2024, the EU Parliament passed the EU AI Act, which adopts

⁹See White House Press Release October 30, 2023.

a risk-based approach and mandates a variety of risk-mitigating actions for firms. Although the Act has yet to be adopted by the European Council, it notably includes extraterritorial enforcement provisions, meaning that its rules may be applied to businesses that are not headquartered within the EU and to those headquartered in the EU conducting business elsewhere. The UK represents perhaps a middle case, in that it has adopted a version of the 2018 GDPR, but as an ex-EU member, it will not be immediately subject to the EU AI Act. Parliament adopted a less-sweeping and mostly voluntary set of guidelines for the development and application of AI in February 2024. The UK's approach thus far is perhaps more pro-innovation than even the United States. These four countries are thus grappling with different approaches to rules and standards for AI. All surveys were administered in the home country's official language.

Our experimental design consists of a conjoint experiment in which we present respondents with three sets of paired choices of international regulatory regimes for AI. Each option consists of a randomization of five attributes: members, scope, targeted actors, obligation, and organization. Prior to the first paired comparison, respondents are shown the following text, which is meant to orient them to the task:

Many have argued that successful AI regulation will require international collaboration. However, there are a wide range of forms that collaboration could take. We are now going to ask you to compare a few proposals that vary in the members of the regulatory initiative, whether it is targeted to specific AI uses or general, whether compliance is legally binding or voluntary, the targets of regulation, and whether a small or large international organization is created to manage reporting and other activities.

The respondents then compared proposals consisting of the random assignment of the five elements mentioned above (membership, obligation, regulatory targets, scope, and or-

ganization).¹⁰ The levels within each attribute are listed below:

Members

- National governments
- National governments and private firms
- National government, private firms, and nongovernmental organizations

Scope

- Specific standards requiring non-discrimination
- Specific standards requiring data privacy
- Specific standards requiring transparent disclosure of algorithms
- Specific standards requiring safeguards against displacement of human workers
- General standards requiring non-discrimination, data privacy, transparent disclosure of algorithms, and safeguards against displacement of human workers

Targets

- Private Firms
- Government agencies
- Private firms and government agencies

¹⁰An example of the conjoint task as presented to respondents is shown in the Appendix 16.

Obligation

- Non-binding and voluntary
- Binding and mandatory ¹¹

Organization

- International bureaucracy with a large staff
- Secretariat with a small staff

Prior to seeing these paired choices that randomize the above levels, respondents answered three questions: their level of concern about AI development, whether they use AI tools such as ChatGPT or DALL-E at work, and whether they use such tools in their personal life. Respondents also read a brief preamble that randomizes the risks associated with AI:

Recently, there has been substantial attention to both the risks and benefits of the development of artificial intelligence (AI) by private firms. While this technology is likely to enhance human productivity across a range of industries, a number of concerns remain. A primary concern across sectors is [randomize: **transparency of AI algorithms** – the data used to train the models are undisclosed and the bases of their workings are not understood / **data privacy** – vast stores of information are used to create AI tools but the people from whom the data was mined did not consent to its use / **bias and discrimination** – the data used to develop the AI came from human decisions prone to prejudice and intolerance / **the displacement of human workers** – AI tools make complicated tasks trivial and instant

¹¹Rules and decisions from this body will be formally binding upon members. This means that compliance is mandatory, and noncompliance will be enforced through penalties. There will be mandatory reporting on activities and uses of AI

and therefore push people out of valuable jobs].

We are primarily interested in how elites from various industries view the design elements of international AI collaboration, as well as how priming respondents with specific concerns influences their choices. In addition to the conjoint choices, we also administer several attitudinal and behavior questions potentially responsive to treatment. The first gauges general support for the creation of an international institution to govern AI, while the second two are measures of potential political behavior. Below we list the language for the U.S. versions of these outcome questions; versions of our UK, France, and Germany surveys are substantively identical and are provided in the Appendix. Full surveys and translations are available upon request.

- In general, do you support or oppose the creation of an international institution to regulate AI? [respondents may choose strongly oppose, oppose, don't know, support, strongly support]
- Would you be willing to sign the following petition, which will be sent to representatives in Congress and in the Executive Branch, advocating for the U.S. to support the creation of an institution with the features you just read?

Petition for the Establishment of International Rules to Regulate Artificial Intelligence

We, the, undersigned, hereby urge Congress and the President to participate in a collaborative effort with other nations to establish international governance for artificial intelligence (AI). Many industry insiders and academic experts have warned of the possibility of misuse of this powerful and emerging technology. These concerns include, but are not limited to, the possibility for widespread misinformation and election interference, invasions of privacy on an unprecedented

scale, algorithmic bias and discrimination, and increased surveillance by governments, infringing upon universal freedoms and human rights. Some have even predicted more catastrophic implications for democracy and the maintenance of social order.

Given that many of these problems are international in scope, and that solutions are only viable if the governments of the world coordinate on the establishment and enforcement of rules and guidelines, we urge our government officials to prioritize the creation of an international AI regulatory regime. The U.S., given its leading position in the development of AI technology, is in a strong position to urge the universal adoption of risk-minimizing practices and rules for appropriate use of AI. The U.S. can utilize its industry-leading position to encourage and facilitate adoption of rules that balance incentives for innovation with guard rails against many of the concerns raised about AI.

- Would you be willing to use the following email template to contact your Representative in Congress urging the U.S. to support the creation of an institution with the features you just read?

Dear Congressperson ____:

I am a constituent working in an industry that utilizes AI technology. I believe the concerns about (select all that apply) [algorithmic bias; misinformation; data privacy; replacement of human workers] are very justified and require a legislative solution. I write to ask that you prioritize and support legislation aimed at addressing these possible issues as soon as possible, given the fast-paced development of this technology.

Your constituent,

We also collect multiple covariates about respondents' businesses and their roles within them. These include size of firm, growth plans, type of customers, the firm's suppliers, the respondent's responsibility for firm compliance with regulatory law, type of industry, whether the firm is involved in international trade and whether the firm operates within the European Union. Finally, we collect standard political and demographic information to facilitate comparisons across ideological and partisan groupings.

Sample

As noted above, our sample includes 719 respondents from the U.S., 758 from France, 733 from Germany, and 697 from the UK, for a total sample of 2907 respondents with title of manager or higher within their firm. Respondents were screened and recruited by the survey company Cint, which provides a comprehensive list of screening criteria.¹² Our intention was to recruit subjects with some decision-making power within their business, but we purposely adopted the rather inclusive category of manager or higher executive category in order to have diversity of job responsibilities in our sample. We also did not restrict our sample to certain industries or sectors, as general AI use has quickly become pervasive across multiple industry categories.

We include tables summarizing respondents' demographics, as well as industry and employment area, in the Appendix. Because we recruited respondents at the managerial level or above, our sample is somewhat skewed toward more highly educated and higher-income individuals compared to an unrestricted sample of adults. For instance, in the U.S. and U.K. samples, a plurality of respondents have either a four-year college degree or a post-graduate degree. Similar patterns hold when comparing comparable schooling in the French

¹²Screening categories are available at Cint's standard qualifications.

and German samples.

Across the four samples, a significant number of respondents listed their employment area as “service operations,” “marketing and sales,” or “product/service development,” while relatively few listed “manufacturing.”¹³ Our sample is thus skewed toward higher-skilled workers in service industries. The respondents are distributed across a range of sectors, with large proportions in consumer goods and retail; financial services; business, legal, and professional services; healthcare, pharma, and medical products; and tech, media and telecom.

We are thus satisfied that our screening criteria produced an overall sample that is diverse with respect to industry and job function, but consists mostly of higher skilled workers in jobs that either likely already use AI in some capacity or plausibly will in the near future. We are particularly interested in what these individuals, and not just top executives at large tech firms, think about possible international regulation of AI.

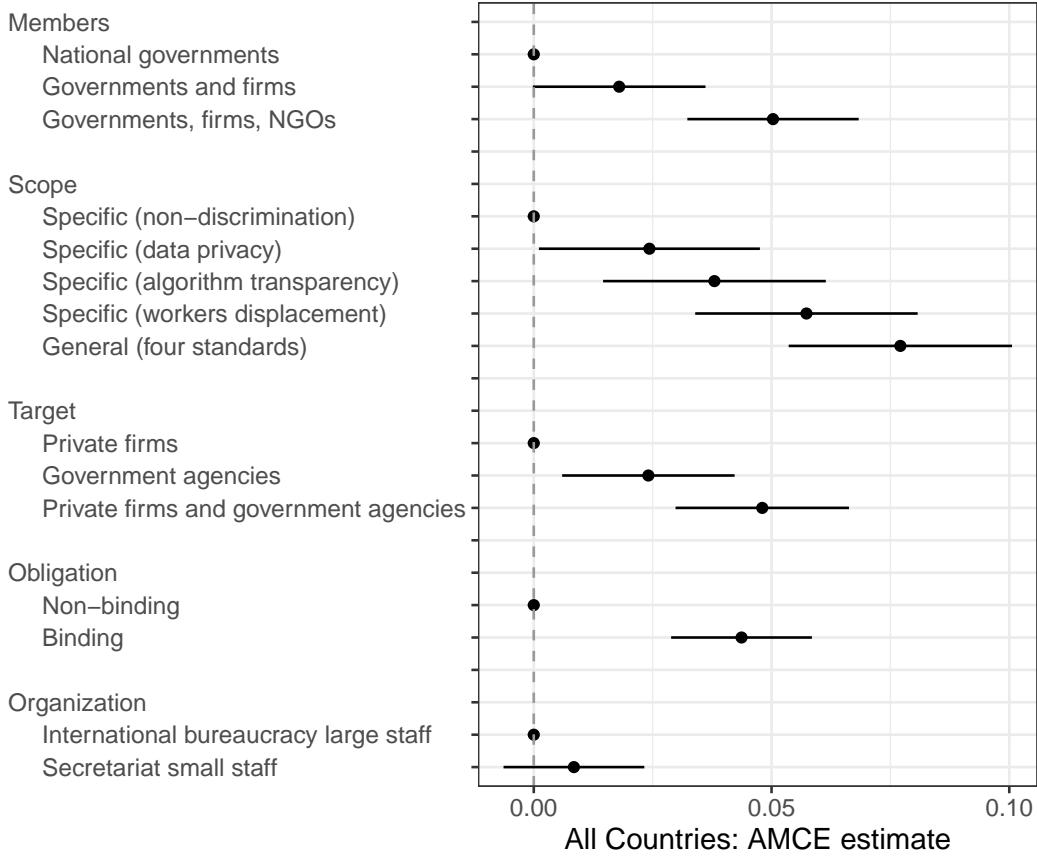
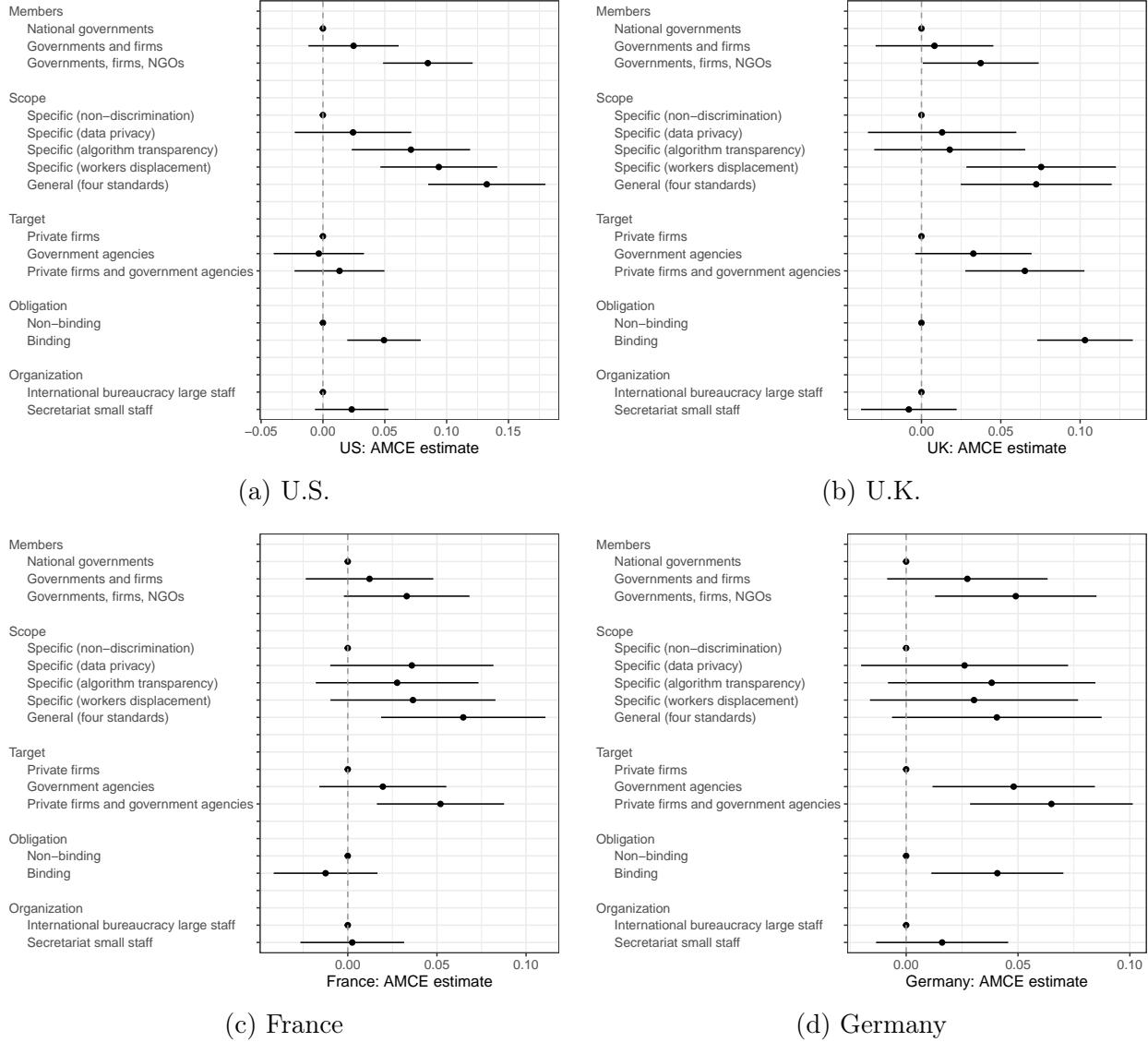

Results

Figure 1 displays the average marginal component effects (AMCEs) for our entire sample, 2907 firm managers or executives with job categories above manager. The results paint a clear story: across the sample there is a strong preference for an inclusive regulatory initiative that counts governments, firms, and NGOs as stakeholding members, covers general AI standards, targets private firms *and* government agencies, and entails binding obligations. Respondents show little discernible difference about whether this regulatory initiative should entail a large or small centralized bureaucracy; the point estimate for the average marginal component of a secretariat with a small staff is positive, but confidence intervals overlap with 0.

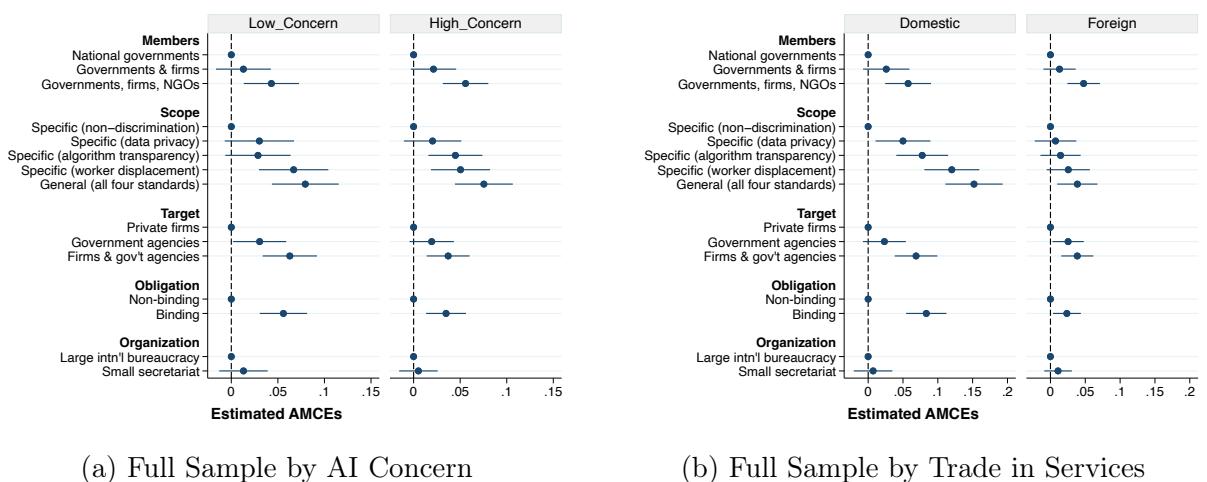
¹³The manufacturing category is under 7% in the UK, French, and US samples, and 10% in the German sample.


Figure 1: AMCE Plots, Full Sample

Below we present AMCE plots for each of our country samples. The results are remarkably consistent across countries. Across all four countries, respondents preferred institutional arrangements that included governments, firms, and NGOs; mandated general standards covering all four specific issue areas comprehensively; and preferred that standards target both private firms and government agencies.¹⁴ US respondents were broadly indifferent about the targets of regulation, whether private firms, government agencies, or both. With the exception of French respondents, our sample also clearly preferred institutional arrangements that included binding provisions. And across all four samples, respondents displayed no clear preference over organization size.

¹⁴The preference for general standards narrowly misses statistical significant in the German sample.

Figure 2: AMCE Plots by Country


The cross-national similarities in the direction and substantive size of the conjoint treatment effects—though not all are statistically significant—suggest that there are not meaningful differences between managers of firms based in France and Germany compared to managers in the United States and United Kingdom. If anything, the differences run in the opposite direction, with EU managers preferring slightly weaker scope and obligation than US and UK managers, though in no instance are these differences significant statistically. Indeed, the similarity cross-nationally in managers' preferences for more encompassing or-

ganizations with binding obligations is the main take-home message from the cross-national results.

These preliminary findings do not support H3, which posited that private-market actors would generally prefer voluntary, non-governmental standards and rules. The picture that emerges, on the contrary, is that business managers across a range of sectors exhibit a clear preference for broad, binding, and inclusive regulation of AI technology.

In evaluating H1 and H2, we find no compelling evidence that—compared to subjects with lower levels of concern over artificial intelligence—subjects who are more concerned about AI expressed preferences for stronger international governance. Coefficients for greater cooperation in terms of stronger bindingness, greater stakeholder inclusion, more general principles, and a larger international bureaucracy are substantively similar for subjects with greater concern over AI compared to those with lower concern. See Figure 3a. This result is robust to different cutoffs for high vs. low concern about AI either at or above the median value of 7 on the 10-point scale (Figure 3a displays the results with the cutoff set at the median). The substantive effects, if anything, are slightly weaker for the subgroup with higher AI concern, but the differences are not significant statistically.

Figure 3: AMCE Plots: AI Concern and Trade in Services

The results evaluating H5 similarly show no evidence that preferences for greater AI

regulation in terms of scope, bindingness, or encompassed entities shift upward with foreign trade in services or with foreign trade generally. Figure 3b displays the results by subgroup for the managers at firms that engage in trade in services by either exporting services to foreign entities, importing services from abroad, or both. The reference condition is managers of firms that do not trade in services. Figure 3b indicates that preferences for greater scope and tighter obligation actually decrease for managers whose firms engage in services trade. Here, the results for managers trading services are smaller substantively across the conjoint conditions for scope and obligation. The differences in general scope and binding obligation are significant statistically for the managers trading services compared to those without any services trade. These results are broadly robust to analyzing effects in subgroups of managers whose firms engage in any foreign trade—not just in services, though the differences in scope and bindingness between subgroups while similar in substance to those shown in Figure 3b are no longer significant statistically.

We found no strong evidence that priming subjects with specific concerns about AI governance affected their choice in the ‘scope’ dimension of the conjoint tasks. In Appendix Section 1, we show figures on the average number of times (out of three) that respondents preferred a specific form of AI regulation aligned with their priming treatment. Across all four countries, there is little difference between treatment and control groups on this metric.

The choices in the conjoint task portion of a survey—consisting of 3 sets of paired choices—indicate a general preference for binding vs. voluntary standards, an inclusive set of stakeholders as members, and general standards that cover multiple areas of concern with respect to AI technology. We find few differences when we analyze respondent choice broken down by whether their firm engages in trade or by prior concern about AI technology. These results paint an interesting picture for manager and firm-executive preferences. When faced with hypothetical options, they tended to choose the more robust versions of a regulatory institution. Next, we turn to whether their paired choices translate into a willingness for political action.

Behavioral Outcomes

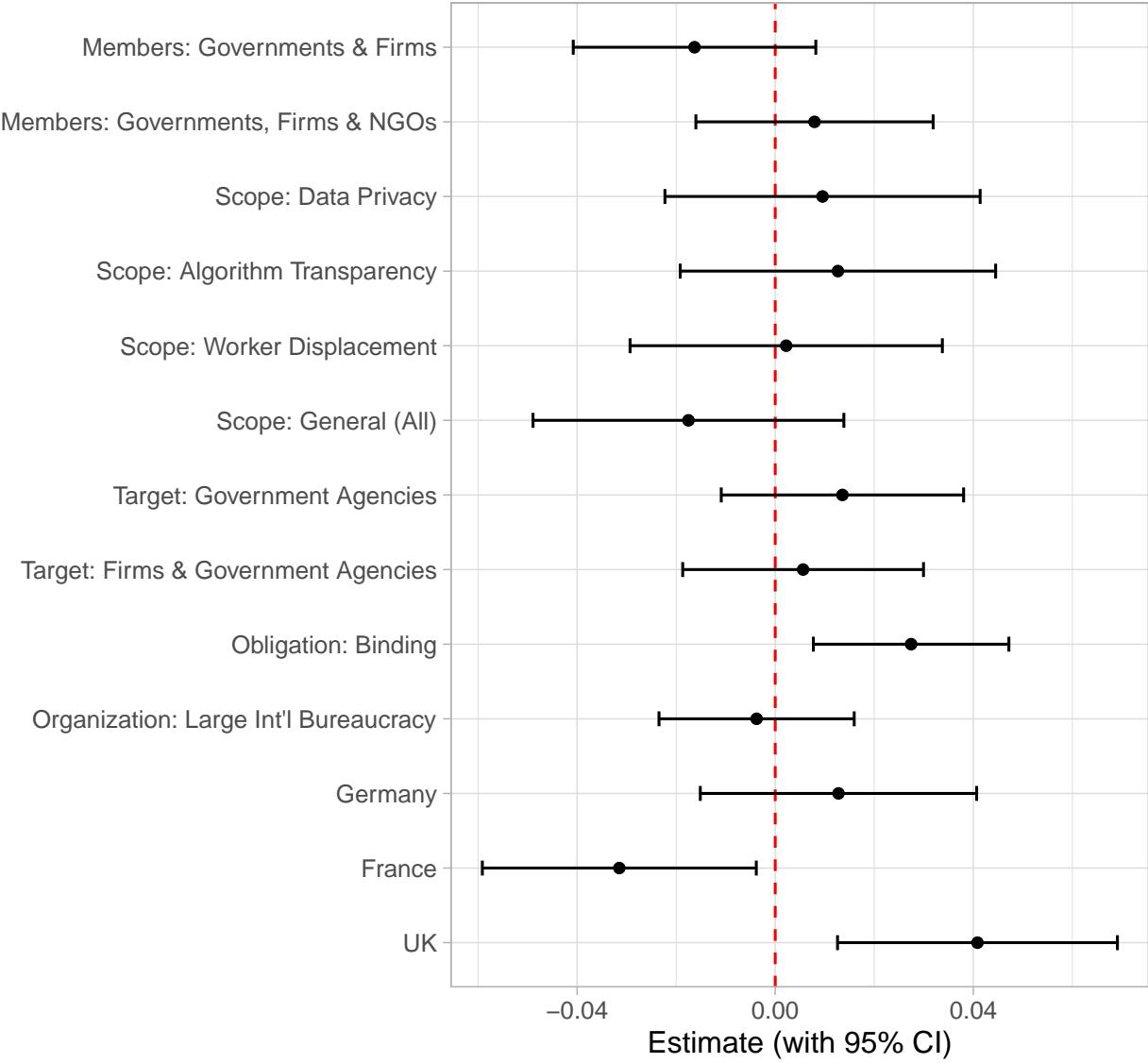
The conjoint tasks in our survey required respondents to choose a proposal; there was no option to choose neither. In order to assess whether respondents would actually favor the proposal they chose, and to elicit responses that correspond to actual political behaviors, we further asked three outcome questions. The first, after the first conjoint task, asked respondents to display their level of support for the proposal they had just chosen. Respondents chose their level of support on a 5-point scale with the following options: strongly oppose, oppose, neither support or oppose, support, and strongly support. For ease of interpretation, in the analysis below we dichotomized this scale into support (collapsing the support and strongly support categories) and no support (collapsing oppose, strongly oppose, and neither support or oppose), though the results are similar if we treat the DV as an ordinal variable.¹⁵

The second behavioral outcome, after the second randomized conjoint task, asked respondents whether they would sign a petition endorsing the proposal they chose that would be sent to their national government (see above for wording). The third, following the third and final conjoint task, asked respondents whether they would be willing to send an email, using a provided email template, that urged their legislative representatives to support the proposal they chose (see above for wording). We therefore isolated the proposal a respondent chose in each of the three conjoint tasks, then regressed the elements of that proposal on the corresponding behavioral outcome question. The unit of analysis is therefore the proposal-respondent, restricted to only proposals that were chosen. We focus on results in which we pool responses to each of the three questions, treating support, signing a petition, and sending an email as binary yes/no outcomes. This pooled analysis restricts the sample size relative to the AMCE estimates; whereas the former is conducted at the proposal level, and thus includes 6 proposals viewed per respondent, the pooled behavioral analysis includes only half as many proposals. Analysis of individual behavioral outcomes, included in the

¹⁵See Appendix.

appendix, further reduces the sample sizes to one proposal per respondent.

For ease of presentation, the figures below display coefficient estimates from linear probability models.¹⁶ Where a conjoint dimension consisted of multiple categories, the excluded reference categories are only national governments (members), specific standards requiring non-discrimination (scope), and only private firms (target). The obligation and organization dimensions consist of only two categories, so dummy variables indicating whether the obligation would be binding and mandatory and whether the organization would only consist of a large international bureaucracy were included.


Figure 4 displays marginal effects when we pool answers to all three behavioral questions into a dichotomous "yes/no" dependent variable. The linear probability model results underlying these predicted marginal effects are available in table form in the Appendix.

¹⁶These results are consistent with corresponding logit and probit results, available in the Appendix.

Figure 4: Pooled Sample

All countries: Any Behavior

Once we move to behavioral outcomes, our sample is reduced by half, as noted above. However, the coefficient on binding obligations remains statistically significant and positive, as in the conjoint task analysis above. Several other features, such as the inclusion of governments, firms, NGOs, show positive associations with affirmative answers to our behavioral questions, though none reach conventional levels of statistical significance. Finally, we in-

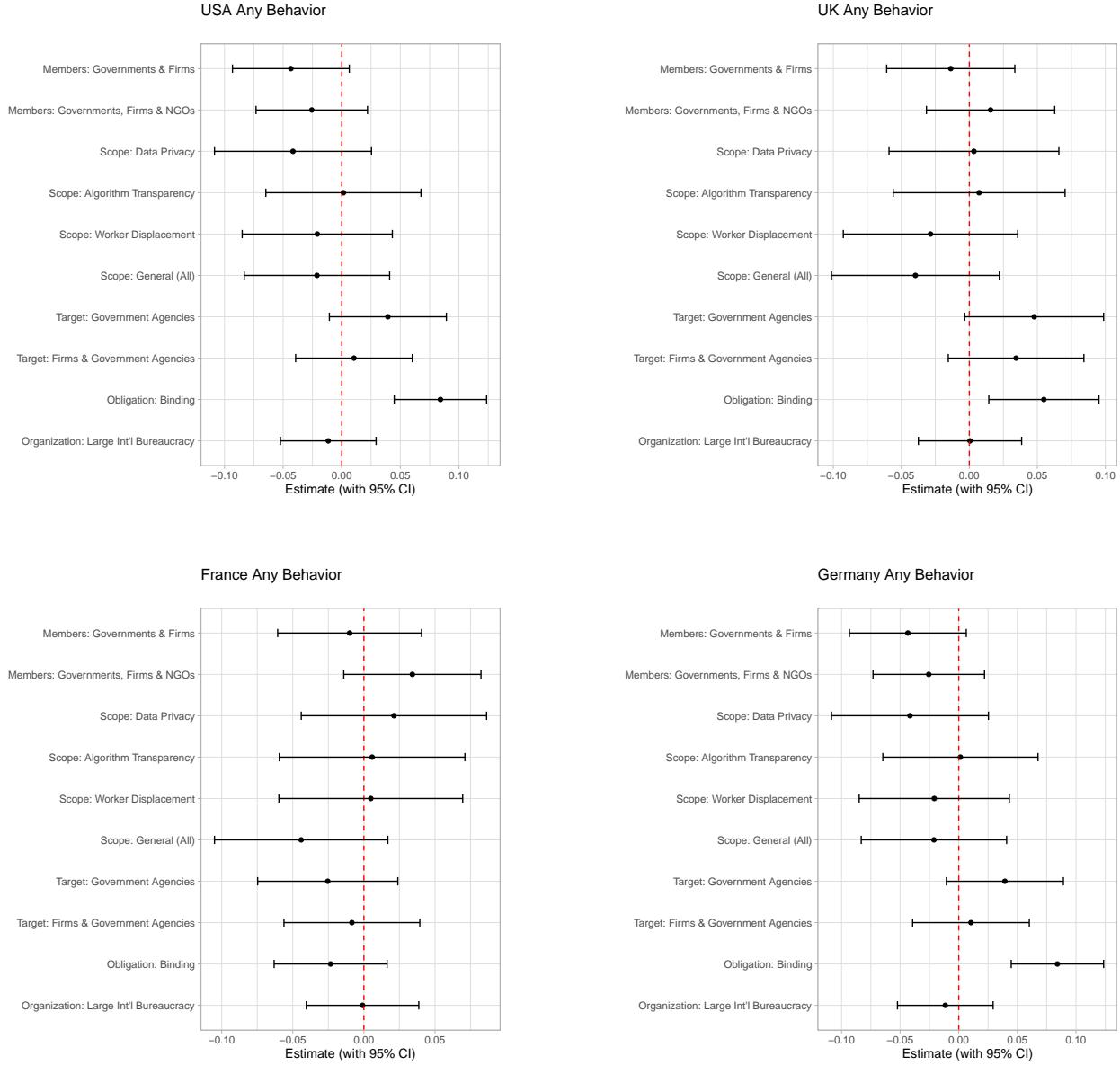

cluded country fixed effects in the form of country dummies, with the U.S. as the reference category. Respondents in the United Kingdom show a positive and statistically significant likelihood of supporting the proposals they chose, as well as signing petitions in support and emailing their MPs to urge them to make transnational AI governance a priority.

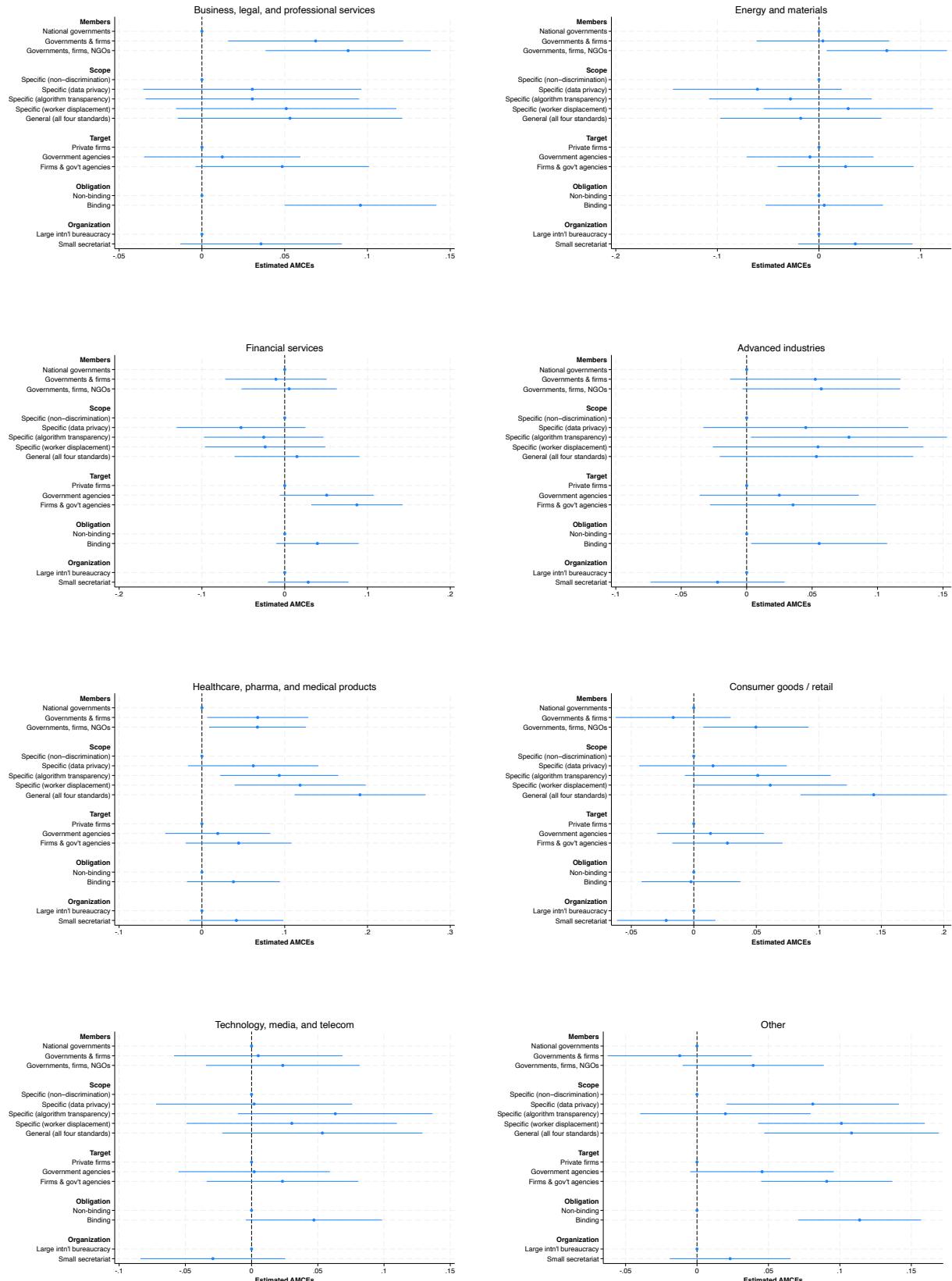
Figure 5 presents results in a similar way — with each outcome pooled as a yes or no dependent variable — then estimated separately for each country sample; each column pertains to one country. These results are mostly consistent with those we estimated when pooling the country samples, but noisier due to reduced statistical power.¹⁷ The coefficient estimates on binding and mandatory provisions are positive and statistically significant across most dependent variables in the U.S. and U.K. samples, though in the French and German samples confidence intervals overlap with zero. There have been several high-profile cases of tech companies pushing back against the EU AI Act as being too restrictive, which may explain the weaker results in France.

¹⁷The unit of analysis is, again, the proposal-respondent, and the sample is restricted to only the proposals chosen in the conjoint task. There are thus 3 observations per respondent, but results for country samples are presented individually.

Figure 5: Linear Probability Coefficients by Country, DV: Any Behavior

Moving to the individual country samples reduces sample sizes, making the estimates less precise, with many estimated confidence intervals overlapping zero. However, with the exception of France, there remains a clear preference for an institution with binding, obligatory rules. The non-result with respect to France may be partially explained by the very vocal opposition to the EU AI Act in France during the period our survey was in the

field. Several French tech firms, including the AI firm Mistral, strongly opposed the Act and the French Government criticized some provisions.¹⁸ This could have contributed to anti-regulatory sentiment in France during the summer of 2024.


Exploratory Analysis by Industry

We did not have strong priors about variation in regulatory preferences across industries and therefore did not include industry specific predictions among our pre-registered hypotheses. The following analyses are therefore exploratory. We follow a similar approach as above and estimate AMCEs by industry category. The results are shown in Figure 6.

¹⁸E.g. Alexandre Piquard, "France keeps up pressure on EU's AI Act, despite mounting criticism," *Le Monde* 27 January 2024.

Figure 6: AMCE Plots by Industry

When we estimate AMCEs by industry, we see broadly similar results. Managers in business, legal, and professional services; advanced industries; and the “other” category prefer binding rules, with statistically significant and positive AMCEs. Managers in technology, media, and telecom; financial services; and healthcare, pharma, and medical products prefer binding rules, though AMCEs very narrowly miss conventional levels of statistical significance. AMCE estimates for managers in consumer goods and retail or energy and materials show no statistically significant preferences with respect to whether regulatory rules should be binding.

Respondents working in business, legal and professional services; energy and materials; healthcare, pharma, and medical products; and consumer goods and retail prefer the most inclusive category of members, indicating a preference for broad inclusion of stakeholders. Respondents in the “other” category and in advanced industries also show some preference for inclusive membership, though confidence intervals on the estimated AMCE narrowly overlap with zero.

Respondents in healthcare, pharma, and medical products, consumer goods and retail, and the “other” category prefer encompassing standards by statistically significant margins. Those in technology, media, and telecom ; advanced industries, and business, professional and legal services also show some preference for encompassing standards over specific standards, though again estimated AMCEs slightly overlap with zero.

Finally, AMCEs on the subsample of managers working in financial services and the “other” category show positive and statistically significant preferences for including both firms and government agencies as targets of regulation. AMCE estimates for all other industry subsamples are positive with respect to including both firms and government agencies as regulatory targets, though confidence intervals range from narrowly overlapping zero to positive estimates but confidence intervals with more overlap with zero.

Although these subsample results are somewhat noisier than our AMCE estimates by country or in the pooled sample, the results are more or less consistent with a strong pref-

erence for binding regulation, and less uniformly strong but still positive preferences for inclusive membership, encompassing standards, and targets that include both the private sector and government.

Conclusion

Our findings suggest that firm managers and executives prefer several characteristics of international AI rules over others. In particular, they show a preference for binding and mandatory rules in a regulatory apparatus that includes governments, firms, and NGOs and covers a broad range of concerns about AI technology. From a conventional perspective that expects firms and other private market actors to generally look upon government regulation with some skepticism, these results are surprising. However, an alternative explanation is that firms want clear and strong guidance on what they can and cannot do with AI technology, and they want that guidance to be binding on everyone, including their competitors. And given that governments and politicians tend to lag behind industry in understanding new technologies, a regulatory initiative or international governing body that includes input from multiple stakeholders would seem appealing.

Our estimates are much less precise when we examine behavioral outcomes, especially when we restrict attention individual country samples. This is partly due to decreased sample size, but it also likely because behavioral tasks, especially signing a petition or emailing a representative, entail more effort and involve identifying oneself. The pooled estimates also likely mask some heterogeneity across countries, as French respondents were less moved by proposals that included binding obligations. Future work could further explore these country-level differences.

Finally, although we did not pre-register expectations with respect to specific industries, the exploratory analysis by industry mostly accords with our conjoint AMCE estimates. Identifying cross-industry heterogeneity is also a fertile area for future research, although

we do observe a preference for binding initiatives with more inclusive members and more comprehensive targets across many industries.

This paper is the first, to our knowledge, to investigate elite preferences about AI regulation. Our approach presented respondents with proposals for international regulation that vary in relative high-level, abstract dimensions motivated by the study of legalization and rational design of international organizations. There remains open ground for investigating opinion about more specific, micro-level features of AI regulation. Our contribution represents only an initial foray into understanding these preferences using a conjoint experimental design mixed with features of a traditional priming experiment and analysis of behavioral choice.

Works Cited

Acemoglu, Daron. *Harms of AI*. National Bureau of Economic Research, 2021.

Acemoglu, Daron, and Pascual Restrepo. “Automation and new tasks: How technology displaces and reinstates labor”. *Journal of economic perspectives*, vol. 33, no. 2, 2019, pp. 3–30.

———. “The race between man and machine: Implications of technology for growth, factor shares, and employment”. *American economic review*, vol. 108, no. 6, 2018, pp. 1488–542.

Agrawal, Ajay, et al. *Power and prediction: The disruptive economics of artificial intelligence*. Harvard Business P, 2022.

Albertson, Bethany, and Shana Kushner Gadarian. *Anxious politics: Democratic citizenship in a threatening world*. Cambridge UP, 2015.

Bradford, Anu. *Digital empires: The global battle to regulate technology*. Oxford UP, 2023.

Chapman, Terrence L, et al. “Leakage in international regulatory regimes: Did the OECD Anti-Bribery Convention increase bribery”. *Quarterly Journal of Political Science*, vol. 43, 2020.

DeMarzo, Peter M, et al. “Self-regulation and government oversight”. *The Review of Economic Studies*, vol. 72, no. 3, 2005, pp. 687–706.

Goldstein, Judith, et al. “Introduction: Legalization and world politics”. *International organization*, vol. 54, no. 3, 2000, pp. 385–99.

Gruber, Lloyd. Ruling the World: Power Politics and the Rise of Supranational Institutions. 2000.

Guisinger, Alexandra. *American opinion on trade: Preferences without politics*. Oxford UP, 2017.

———. “Determining trade policy: Do voters hold politicians accountable?” *International Organization*, vol. 63, no. 3, 2009, pp. 533–57.

Hall, Peter A, David Soskice, et al. “An introduction to varieties of capitalism”. *Debating varieties of capitalism: A reader*, 2001, pp. 21–74.

Héritier, Adrienne, and Sandra Eckert. "New modes of governance in the shadow of hierarchy: Self-regulation by industry in Europe". *Journal of Public Policy*, vol. 28, no. 1, 2008, pp. 113–38.

Keohane, Robert O. *After hegemony: Cooperation and discord in the world political economy*. Princeton university press, 2005.

Koremenos, Barbara, et al. "The rational design of international institutions". *International organization*, vol. 55, no. 4, 2001, pp. 761–99.

Mansfield, Edward D, and Diana C Mutz. "Support for free trade: Self-interest, sociotropic politics, and out-group anxiety". *International organization*, vol. 63, no. 3, 2009, pp. 425–57.

Mattli, Walter, and Tim Büthe. "Setting international standards: technological rationality or primacy of power?" *World Politics*, vol. 56, no. 1, 2003, pp. 1–42.

Soder, Lisa, et al. *An Autonomy-Based Classification of AI Agents: Liability and Lessons from the Automated Vehicles Act*. Interface, 2025.

Tallberg, Jonas, Eva Erman, et al. "The global governance of artificial intelligence: Next steps for empirical and normative research". *International Studies Review*, vol. 25, no. 3, 2023, viad040.

Tallberg, Jonas, Magnus Lundgren, et al. "AI regulation in the European Union: examining non-state actor preferences". *Business and Politics*, 2024, pp. 1–22. <https://doi.org/10.1017/bap.2023.36>.

Tallberg, Jonas, and Michael Zürn. The legitimacy and legitimization of international organizations: Introduction and framework. *The Review of International Organizations*, vol. 14, 2019, pp. 581–606.

Weymouth, Stephen. *Digital Globalization: Politics, Policy, and a Governance Paradox*. Cambridge UP, 2023. Elements in International Relations.

Zeng, Jinghan. "Artificial intelligence and China's authoritarian governance". *International Affairs*, vol. 96, no. 6, 2020, pp. 1441–59.

Appendix

0.1 Average Count of Respondents by Priming Treatment and Conjoint Choice

Figure 7

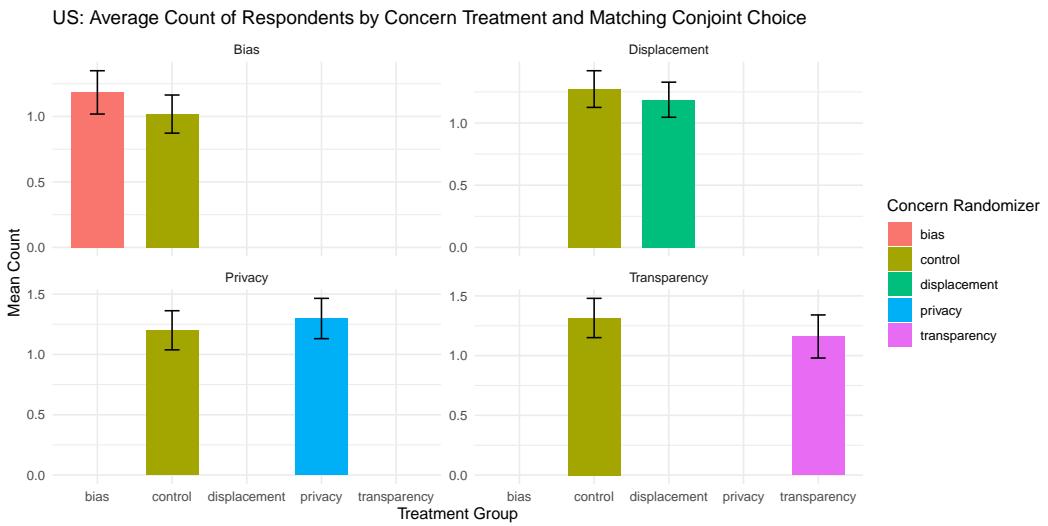


Figure 8

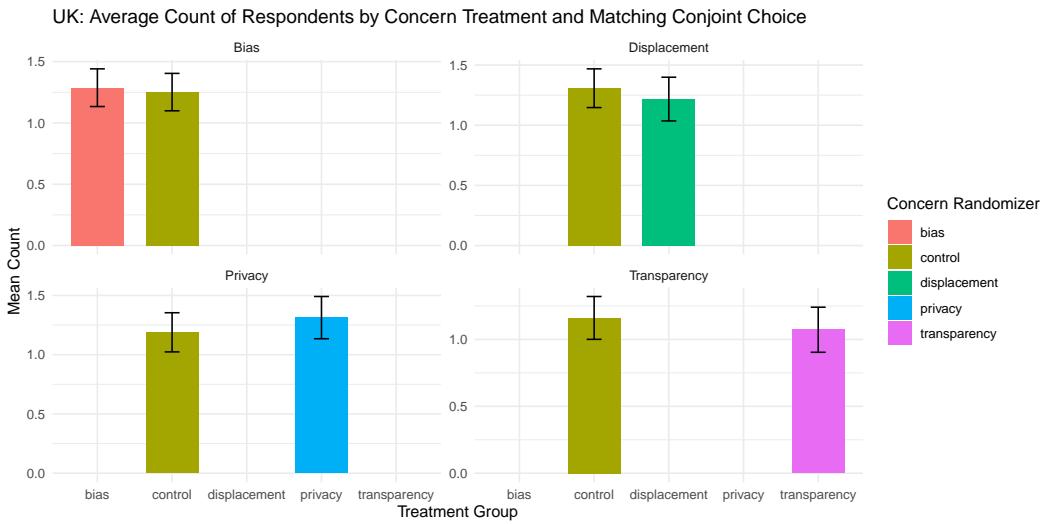


Figure 9

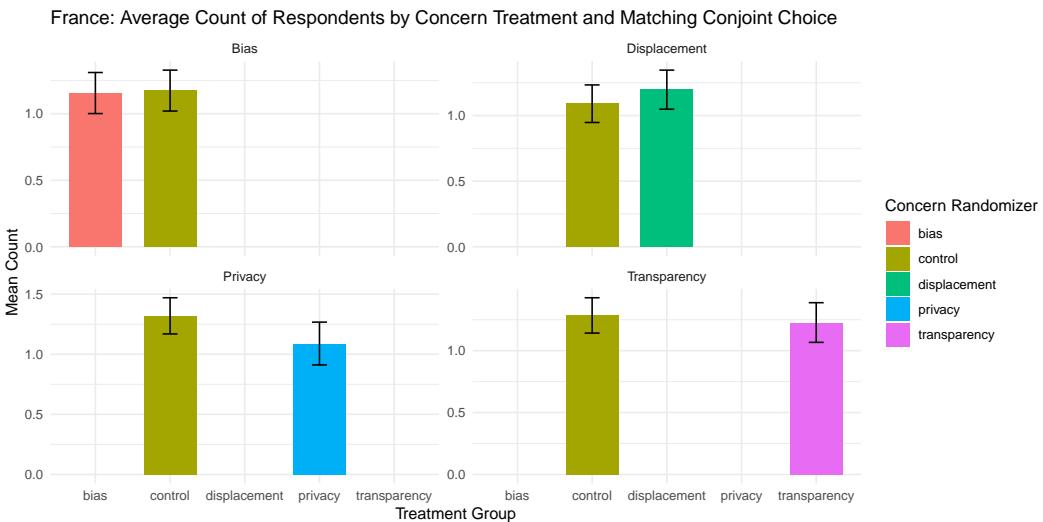
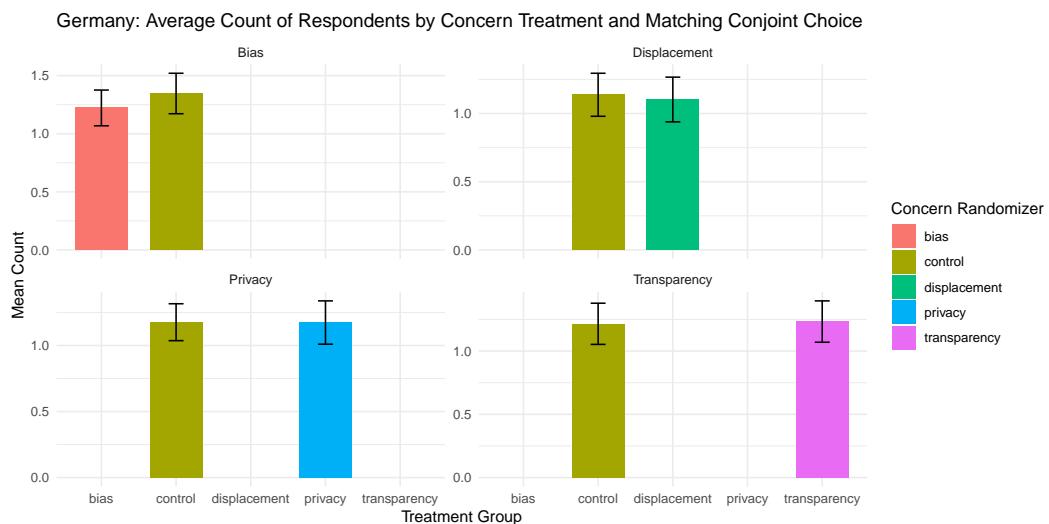



Figure 10

0.2 Sample Demographics

Table 1: Industries and Employment Categories in US Sample

Industry	Percent	Employment Category	Percent
Advanced industries	4.60	HR	10.72
Business, legal, and professional services	13.8	Manufacturing	6.55
Consumer goods	20.78	Marketing and Sales	13.51
Energy and materials	8.79	Product/Service Development	10.72
Financial services	9.21	Risk	5.71
Healthcare, pharma, medical products	12.13	Service Operations	29.25
Tech, media, and telecom	19.8	Strategy and Corporate Finance	6.82
Other	10.88	Supply Chain Management	37
		Other	11.56

Table 2: Respondent Demographics, US Sample

Education	Percent	Income	Percent	Gender	Percent	Age	Percent
some high school	1.26	0–29,999	11.41	Male	47.56	18-24	8.36
high school grad	17.15	30,000–59,999	27.16	Female	51.74	25-34	15.32
some college	18.41	60,000–99,999	28.13	non-binary	0.70	35-44	27.58
2-year degree	13.81	100,000–149,999	17.27			45-54	21.59
4-year degree	31.38	150,000–199,999	8.22			55-64	19.22
post-grad degree	17.99	200,000–249,999	2.56			65 and over	7.80
		250,000–500,000	2.65				
		over \$500,000	1.39				

Table 3: Industries and Employment Categories in UK Sample

Industry	Percent	Employment Area	Percent
Advanced Industries	4.91	HR	11.21
Business, Legal, Professional Services	13.42	Manufacturing	4.31
Consumer good / retail	21.21	Marketing and Sales	11.21
Energy and materials	8.66	Product / service development	11.93
Financial Services	10.53	Risk	6.75
Healthcare, pharma, medical products	11.40	Service operations	27.30
Technology, media, telecom	10.10	Strategy and corporate finance	9.05
Other	19.77	Supply chain management	5.17
		Other	13.07

Table 4: Respondent Demographics, UK Sample

Education	Percent	Income	Percent	Gender	Percent	Age	Percent
some secondary school	0.58	0 - £29,999	10.05	Male	56.92	18-24	5.46
secondary school	19.86	£30,000 - £59,999	35.92	Female	42.65	25-34	24.43
some university	11.37	£60,000 - £99,999	34.91	non-binary	0.43	35-44	28.02
2-year degree	12.09	£100,000 - £149,999	11.21			45-54	23.99
4-year degree	30.65	£150,000 - £199,999	3.74			55-64	14.66
post-graduate degree	25.47	£00,000 - £249,999	0.72			Over 65	3.45
		£250,000 - £500,000	0.28				
		over £500,000	1.29				

Table 5: Industries and Employment Categories in French Sample

Industry	Percent	Employment Area	Percent
Advanced Industries	10.58	HR	11.92
Business, Legal, Professional Services	12.17	Manufacturing	6.23
Consumer good / retail	18.39	Marketing and Sales	19.34
Energy and materials	11.38	Product / service development	13.11
Financial Services	15.58	Risk	6.89
Healthcare, pharma, medical products	8.20	Service operations	14.30
Technology, media, telecom	10.58	Strategy and corporate finance	16.03
Other	13.23	Supply chain management	5.03
		Other	6.89

Table 6: Respondent Demographics, French Sample

Education	Percent	Income	Percent	Gender	Percent	Age	Percent
some secondary school	1.19	0 - €29,999	18.75	Male	47.41	18-24	14.93
secondary school	16.12	€30,000 - €59,999	41.74	Female	51.26	25-34	23.78
some university	12.29	€60,000 - €99,999	24.97	non-binary	1.33	35-44	29.72
3-year degree	30.25	€100,000 - €149,999	5.02			45-54	21.66
4-year degree	23.12	€150,000 - €199,999	1.45			55-64	8.32
post-graduate degree	17.04	€200,000 - €249,999	1.06			Over 65	0.79
		€250,000 - €499,999	1.32				
		over €500,000	1.59				

Table 7: Industries and Employment Categories in German Sample

Industry	Percent	Employment Area	Percent
Advanced Industries	20.82	HR	10.82
Business, Legal, Professional Services	16.85	Manufacturing	10.00
Consumer good / retail	15.34	Marketing and Sales	16.44
Energy and materials	7.53	Product / service development	14.66
Financial Services	11.37	Risk	6.71
Healthcare, pharma, medical products	6.71	Service operations	16.03
Technology, media, telecom	9.45	Strategy and corporate finance	9.73
Other	11.92	Supply chain management	5.48
		Other	10.14

Table 8: Respondent Demographics, German Sample

Education	Percent	Income (per month)	Percent	Gender	Percent	Age	Percent
no certificate	1.64	under €450	0.96	Male	64.51	18-24	10.11
vocational training	23.15	€450 - €900	5.74	Female	34.80	25-34	21.58
secondary school	24.38	€900-€1,050	1.64	non-binary	0.69	35-44	29.10
university degree	28.76	€1,050 - €1,500	4.37			45-54	19.13
post-graduate degree	22.06	€1,500 - €1,950	7.92			55-64	16.67
		€2,400 - €3,300	29.92			Over 65	3.01
		€3,600 - €3,900	11.48				
		€3,900 or more	34.29				

Behavioral Outcome Figures

All Countries

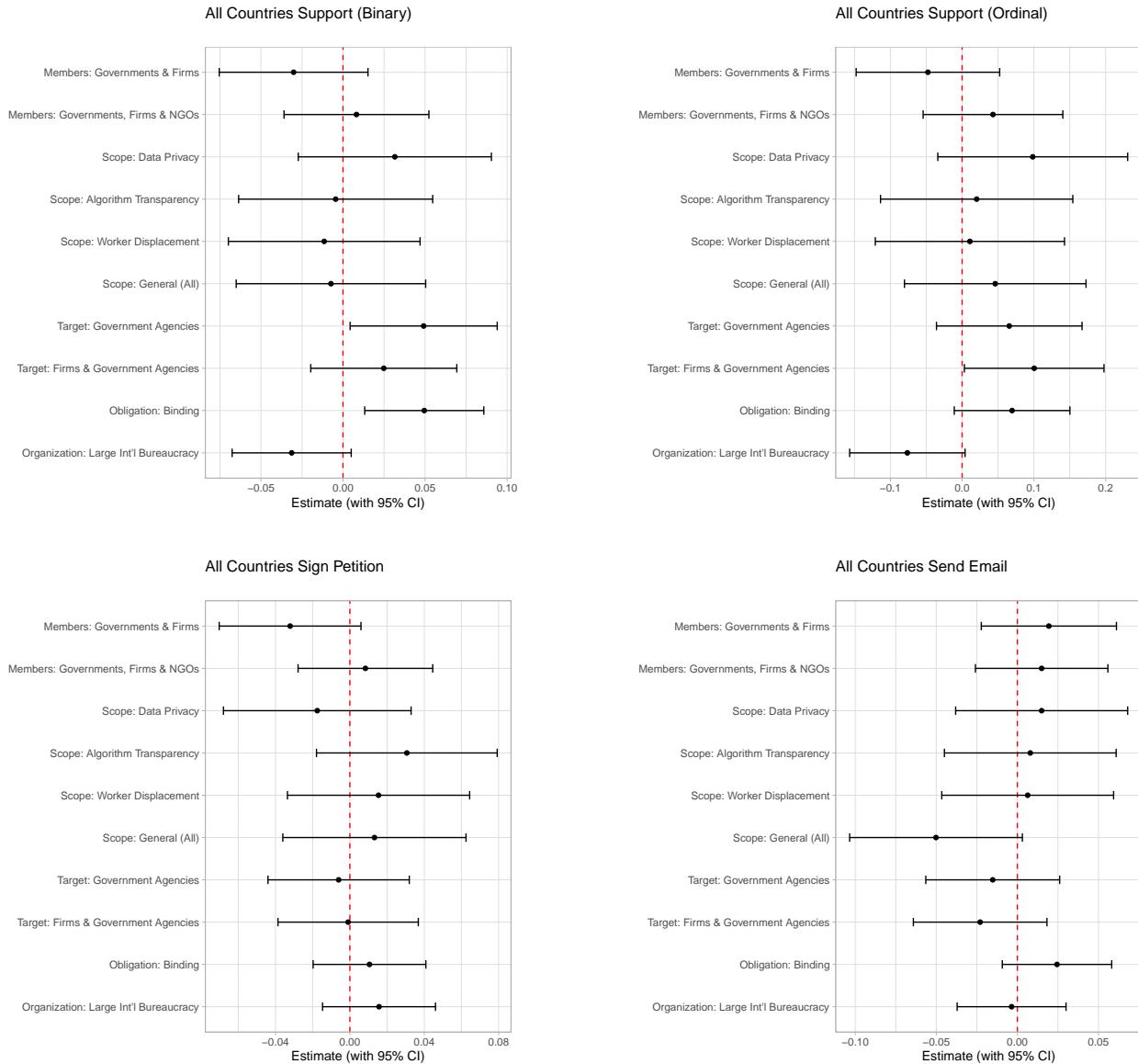


Figure 11: All Countries Behavioral Outcomes

US

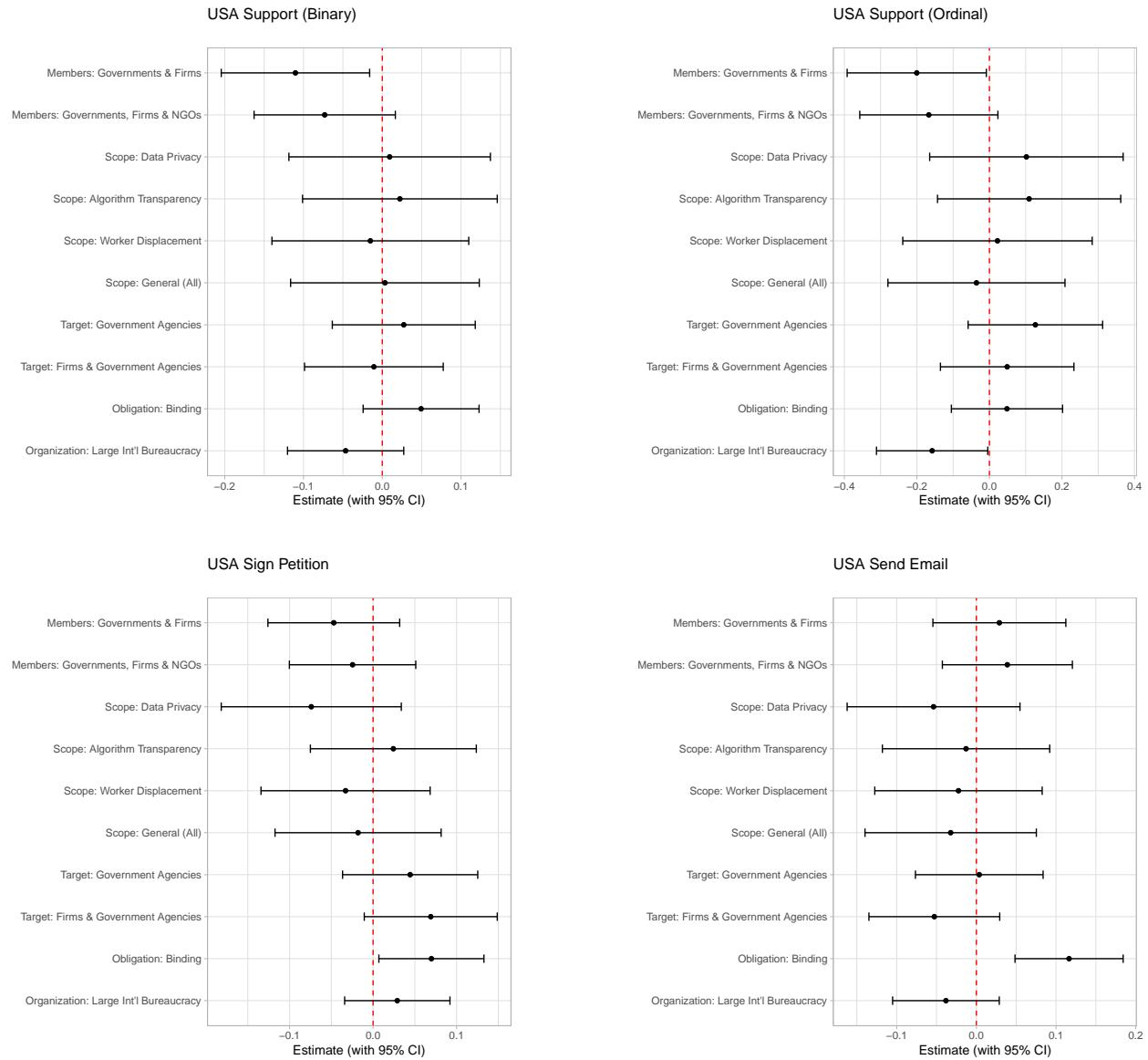


Figure 12: US Behavioral Outcomes

UK

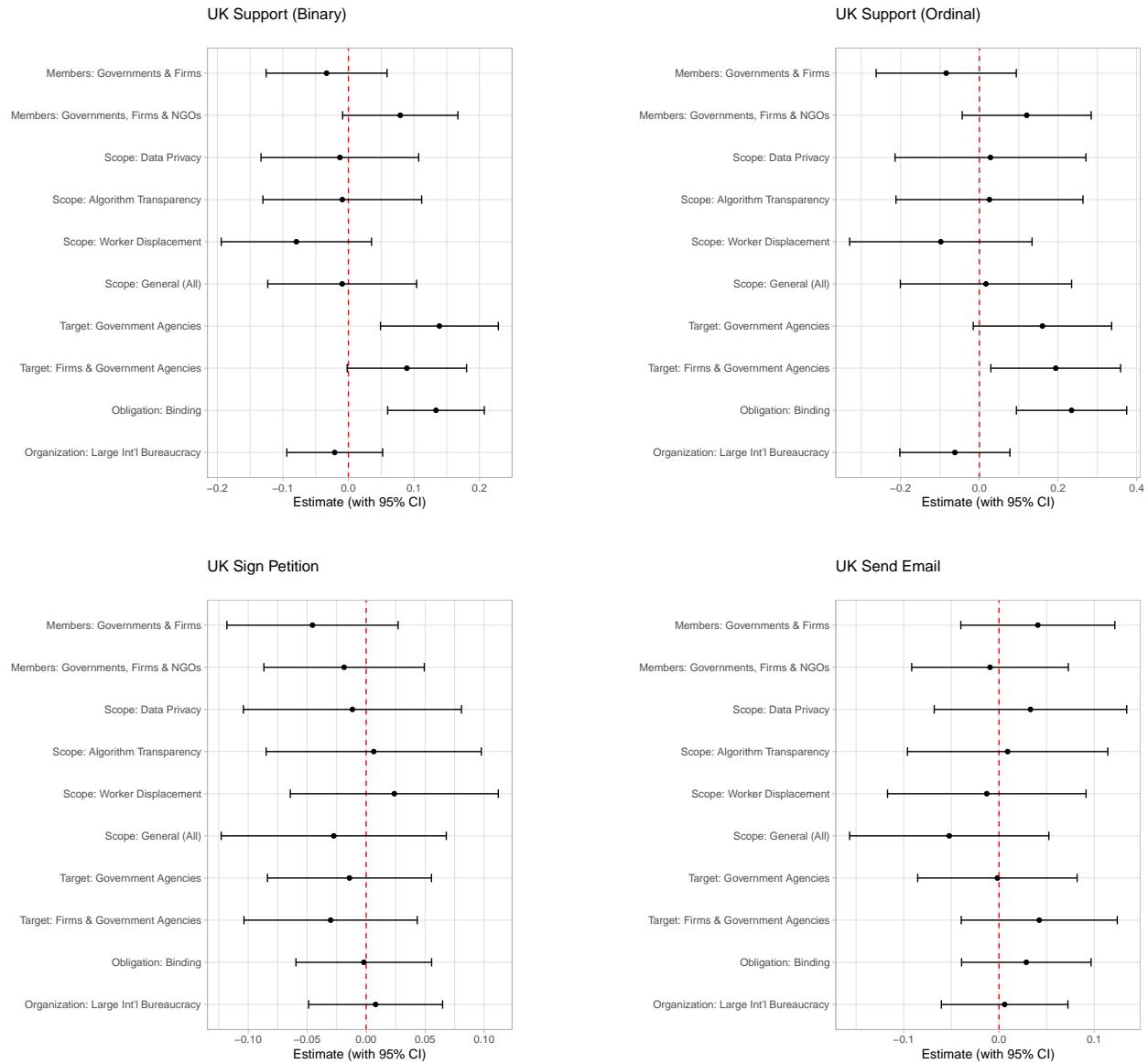


Figure 13: UK Behavioral Outcomes

France

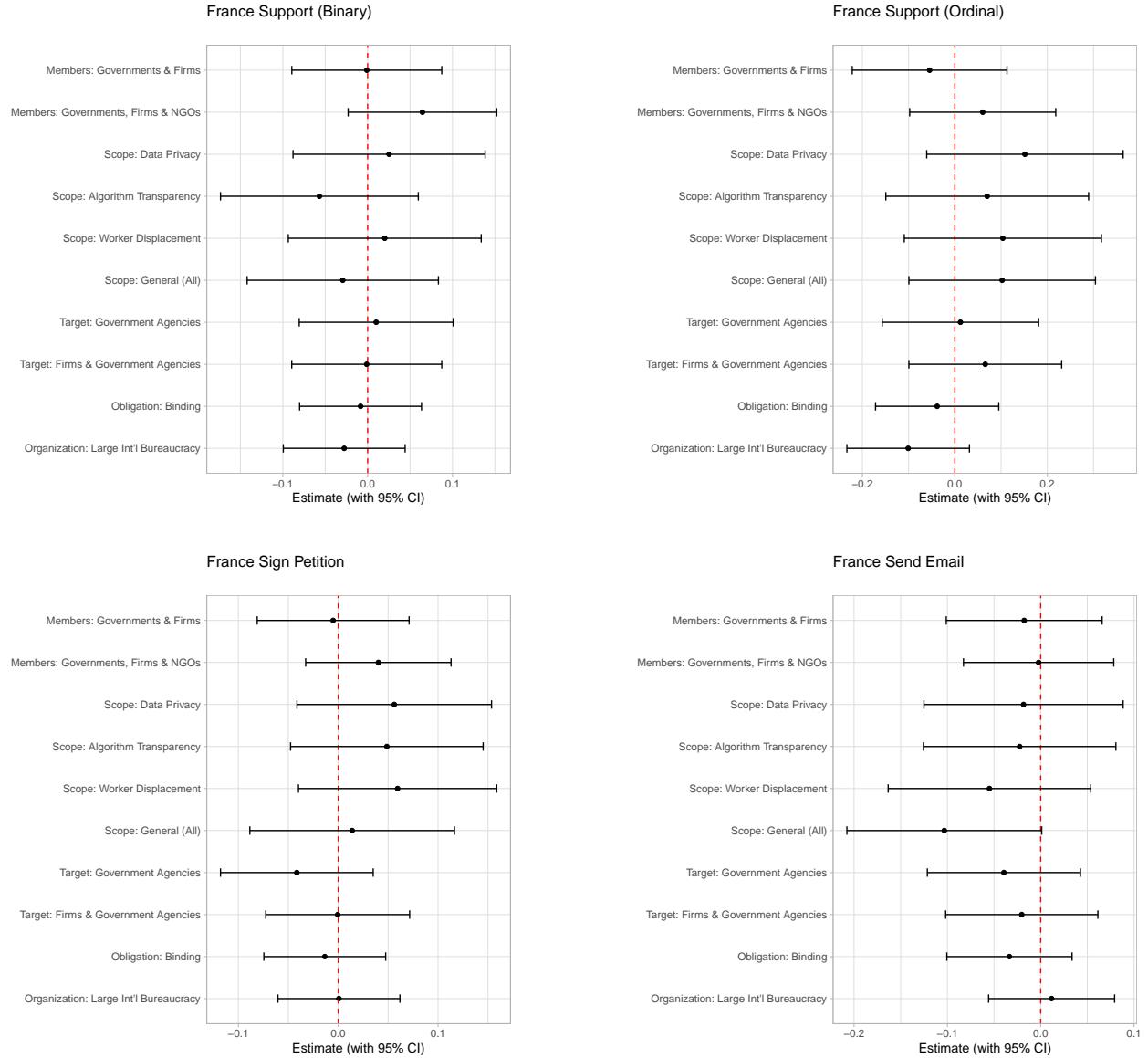


Figure 14: France Behavioral Outcomes

Germany

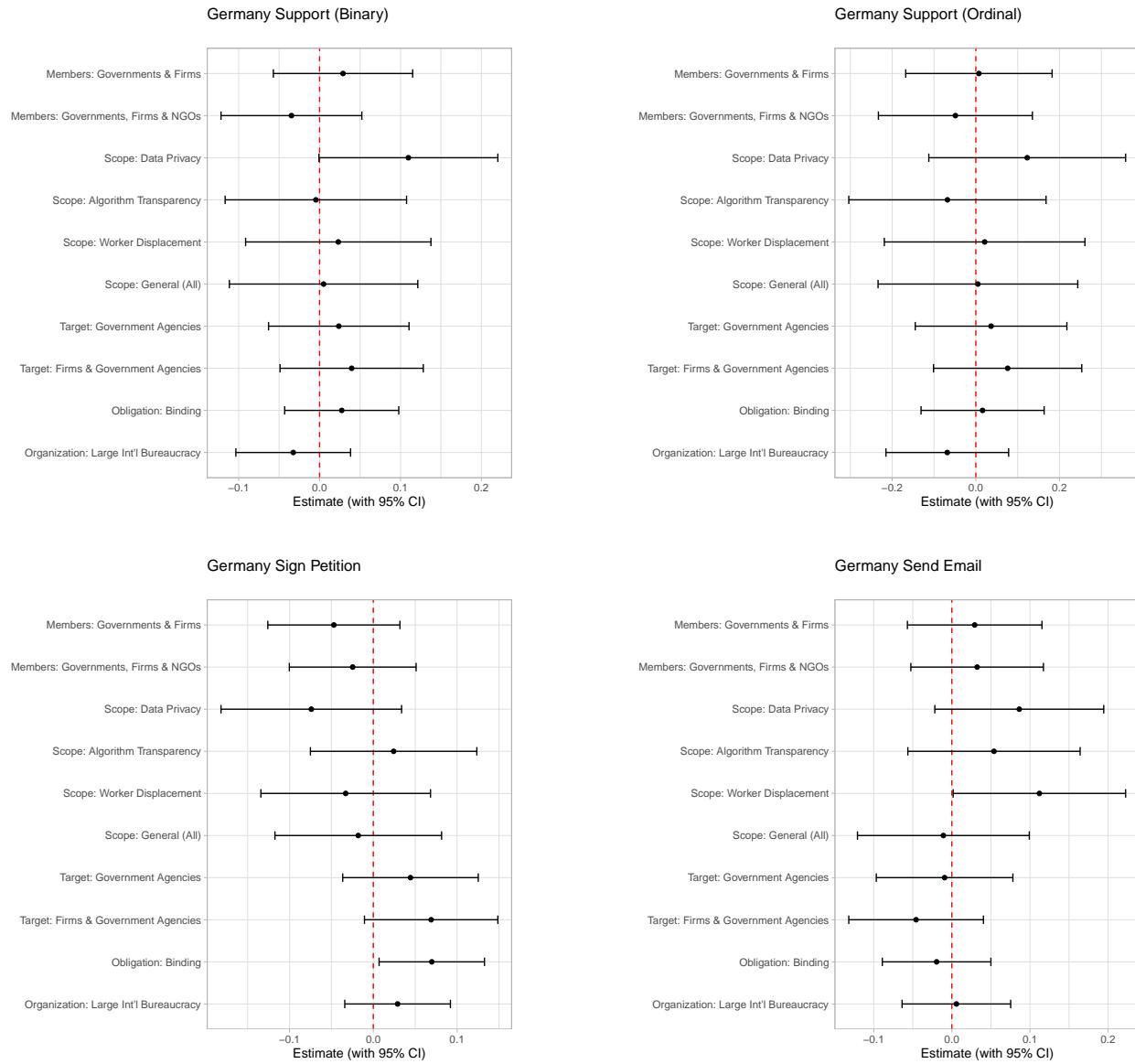


Figure 15: Germany Behavioral Outcomes

Behavioral Outcome tables - pooled sample

Regression results for post-conjoint choice behavioral outcomes. Standard errors are clustered at the respondent level.

Any behavior

Table 9: Regression Results, DV: Any Behavior

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.016 (0.012)	-0.074 (0.057)	-0.045 (0.035)
MemGovsFirmsNGOs	0.008 (0.012)	0.037 (0.056)	0.023 (0.034)
ScoPrivacy	0.010 (0.016)	0.044 (0.075)	0.027 (0.046)
ScoTransp	0.013 (0.016)	0.058 (0.076)	0.036 (0.046)
ScoDisplac	0.002 (0.016)	0.010 (0.074)	0.006 (0.045)
ScoGeneral	-0.018 (0.016)	-0.079 (0.071)	-0.048 (0.043)
TarGovs	0.014 (0.012)	0.062 (0.058)	0.038 (0.035)
TarFirmsGovs	0.006 (0.012)	0.025 (0.057)	0.016 (0.035)
OblBind	0.027** (0.010)	0.125** (0.046)	0.077** (0.028)
OrgLargeBureau	-0.004 (0.010)	-0.017 (0.046)	-0.010 (0.028)
countryDE	0.013 (0.014)	0.058 (0.081)	0.035 (0.050)
countryFR	-0.031* (0.014)	-0.139 (0.078)	-0.086 (0.048)
countryUK	0.041** (0.014)	0.191* (0.082)	0.116* (0.050)
Observations	8,709	8,709	8,709
R ² / Pseudo R ²	0.005	0.004	0.004

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Support, 5-pt. scale and binary

Table 10: Regression Results, DV: Support (5-pt. Scale)

Variable	(1) Linear	(2) Ordered Logistic	(3) Ordered Probit
MemGovsFirms	−0.083 (0.045)	−0.152 (0.085)	−0.096* (0.049)
MemGovsFirmsNGOs	−0.010 (0.044)	0.006 (0.084)	−0.013 (0.048)
ScoPrivacy	0.101 (0.060)	0.180 (0.114)	0.107 (0.065)
ScoTransp	0.045 (0.060)	0.063 (0.114)	0.047 (0.065)
ScoDisplac	0.017 (0.060)	0.012 (0.113)	0.018 (0.065)
ScoGeneral	0.025 (0.057)	0.005 (0.107)	0.016 (0.062)
TarGovs	0.082 (0.045)	0.180* (0.085)	0.100* (0.049)
TarFirmsGovs	0.091* (0.044)	0.156 (0.082)	0.104* (0.047)
OblBind	0.062 (0.036)	0.143* (0.069)	0.069 (0.039)
OrgLargeBureau	−0.095** (0.036)	−0.166* (0.069)	−0.099* (0.039)
Constant	3.383***		
Cutpoints			
Cut1 (Strongly oppose Oppose)		Model 2 (Logit)	Model 3 (Probit)
	−3.064 (0.146)		−1.693 (0.077)
Cut2 (Oppose Neither)	−1.477 (0.122)		−0.896 (0.070)
Cut3 (Neither Support)	−0.062 (0.118)		−0.050 (0.069)
Cut4 (Support Strongly support)	2.271 (0.128)		1.321 (0.072)
Observations	2903	2903	2903
R-squared / Pseudo R2	0.007	0.003	0.003

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 11: Regression Results, DV: Support (Binary)

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.030 (0.023)	-0.122 (0.093)	-0.076 (0.058)
MemGovsFirmsNGOs	0.008 (0.023)	0.033 (0.092)	0.021 (0.057)
ScoPrivacy	0.032 (0.030)	0.129 (0.122)	0.080 (0.076)
ScoTransp	-0.005 (0.030)	-0.018 (0.122)	-0.011 (0.076)
ScoDisplac	-0.011 (0.030)	-0.046 (0.120)	-0.029 (0.075)
ScoGeneral	-0.007 (0.029)	-0.030 (0.119)	-0.018 (0.074)
TarGovs	0.049* (0.023)	0.199* (0.093)	0.125* (0.058)
TarFirmsGovs	0.025 (0.023)	0.100 (0.092)	0.063 (0.057)
OblBind	0.050** (0.019)	0.201** (0.075)	0.125** (0.047)
OrgLargeBureau	-0.031 (0.019)	-0.127 (0.075)	-0.079 (0.047)
Constant	0.513*** (0.032)	0.051 (0.129)	0.032 (0.081)
Observations	2,903	2,903	2,903
R-squared / Pseudo R2	0.007	0.005	0.005

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Signing a Petition

Table 12: Regression Results, DV: Petition

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.032 (0.019)	-0.182 (0.110)	-0.107 (0.064)
MemGovsFirmsNGOs	0.008 (0.018)	0.050 (0.111)	0.027 (0.064)
ScoPrivacy	-0.018 (0.026)	-0.096 (0.142)	-0.057 (0.083)
ScoTransp	0.031 (0.025)	0.183 (0.147)	0.105 (0.085)
ScoDisplac	0.015 (0.025)	0.089 (0.144)	0.050 (0.084)
ScoGeneral	0.013 (0.025)	0.076 (0.145)	0.043 (0.084)
TarGovs	-0.006 (0.019)	-0.035 (0.112)	-0.019 (0.065)
TarFirmsGovs	-0.001 (0.019)	-0.005 (0.112)	-0.002 (0.065)
OblBind	0.011 (0.015)	0.061 (0.090)	0.035 (0.052)
OrgLargeBureau	0.016 (0.015)	0.091 (0.090)	0.052 (0.052)
Constant	0.765*** (0.027)	1.183*** (0.154)	0.725*** (0.090)
Observations	2903	2903	2903
R-squared / Pseudo R-squared	0.004	0.004	0.004

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Emailing a Rep

Table 13: Regression Results, DV: Email

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	0.019 (0.021)	0.092 (0.100)	0.092 (0.100)
MemGovsFirmsNGOs	0.015 (0.021)	0.070 (0.098)	0.070 (0.098)
ScoPrivacy	0.015 (0.027)	0.073 (0.131)	0.073 (0.131)
ScoTransp	0.008 (0.027)	0.038 (0.130)	0.038 (0.130)
ScoDisplac	0.006 (0.027)	0.031 (0.129)	0.031 (0.129)
ScoGeneral	-0.050 (0.027)	-0.229 (0.124)	-0.229 (0.124)
TarGovs	-0.015 (0.021)	-0.073 (0.101)	-0.073 (0.101)
TarFirmsGovs	-0.023 (0.021)	-0.109 (0.100)	-0.109 (0.100)
OblBind	0.024 (0.017)	0.116 (0.081)	0.116 (0.081)
OrgLargeBureau	-0.004 (0.017)	-0.017 (0.081)	-0.017 (0.081)
Constant	0.690*** (0.029)	0.802*** (0.137)	0.802*** (0.137)
Observations	2,903	2,903	2,903
R-squared / Pseudo R-squared	0.004	0.003	0.003

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Individual Country Outcomes

The tables below display regression results on behavioral outcomes by country.

U.S. Sample

Table 14: Regression Results, DV: Any Behavior

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.043 (0.025)	-0.198 (0.116)	-0.122 (0.071)
MemGovsFirmsNGOs	-0.026 (0.024)	-0.118 (0.112)	-0.071 (0.068)
ScoPrivacy	-0.042 (0.034)	-0.189 (0.154)	-0.115 (0.094)
ScoTransp	0.001 (0.034)	0.007 (0.158)	0.008 (0.096)
ScoDisplac	-0.021 (0.033)	-0.096 (0.150)	-0.059 (0.091)
ScoGeneral	-0.021 (0.032)	-0.097 (0.146)	-0.058 (0.089)
TarGovs	0.039 (0.025)	0.181 (0.116)	0.111 (0.071)
TarFirmsGovs	0.010 (0.025)	0.047 (0.113)	0.029 (0.069)
OblBind	0.084*** (0.020)	0.381*** (0.091)	0.234*** (0.055)
OrgLargeBureau	-0.011 (0.021)	-0.053 (0.095)	-0.035 (0.058)
Constant	0.653*** (0.036)	0.640*** (0.164)	0.397*** (0.100)
Observations	2154	2154	2154
R-squared	0.012	0.009	0.009
Akaike Inf. Crit.		2,739.769	2,739.546

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 15: Regression Results for Support (5-pt. Scale)

Variable	(1) Linear	(2) Ordered Logistic	(3) Ordered Probit
MemGovsFirms	-0.200* (0.098)	-0.396* (0.173)	-0.218* (0.100)
MemGovsFirmsNGOs	-0.167 (0.097)	-0.291 (0.174)	-0.169 (0.099)
ScoPrivacy	0.102 (0.136)	0.187 (0.235)	0.116 (0.137)
ScoTransp	0.110 (0.129)	0.171 (0.227)	0.126 (0.130)
ScoDisplac	0.022 (0.133)	0.030 (0.232)	0.037 (0.134)
ScoGeneral	-0.036 (0.124)	-0.065 (0.213)	-0.034 (0.124)
TarGovs	0.127 (0.094)	0.222 (0.167)	0.132 (0.096)
TarFirmsGovs	0.049 (0.094)	0.076 (0.165)	0.058 (0.095)
OblBind	0.048 (0.078)	0.121 (0.139)	0.052 (0.080)
OrgLargeBureau	-0.158* (0.078)	-0.270 (0.138)	-0.162* (0.079)
Constant	3.507*** (0.137)		
<i>Cutpoints</i>			
Cut1		-0.396 (0.175)	-0.218 (0.101)
Cut2		-0.291 (0.169)	-0.169 (0.097)
Cut3		0.187 (0.235)	0.116 (0.136)
Cut4		0.171 (0.228)	0.126 (0.132)
Cut5		0.030 (0.230)	0.037 (0.133)
Observations	718	718	718
R-squared / Pseudo R-squared	0.017	0.006	0.007

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 16: Regression Results, DV: Support (Binary)

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.110*	-0.447*	-0.279*
	(0.048)	(0.195)	(0.122)
MemGovsFirmsNGOs	-0.073	-0.297	-0.186
	(0.046)	(0.185)	(0.116)
ScoPrivacy	0.009	0.038	0.024
	(0.065)	(0.262)	(0.164)
ScoTransp	0.022	0.091	0.058
	(0.063)	(0.254)	(0.158)
ScoDisplac	-0.015	-0.061	-0.037
	(0.064)	(0.256)	(0.160)
ScoGeneral	0.003	0.014	0.009
	(0.061)	(0.245)	(0.153)
TarGovs	0.027	0.111	0.068
	(0.046)	(0.187)	(0.117)
TarFirmsGovs	-0.011	-0.043	-0.027
	(0.045)	(0.180)	(0.113)
OblBind	0.049	0.200	0.125
	(0.037)	(0.151)	(0.094)
OrgLargeBureau	-0.047	-0.189	-0.118
	(0.038)	(0.152)	(0.095)
Constant	0.573***	0.296	0.185
	(0.067)	(0.272)	(0.170)
Observations	718	718	718
R-squared / Pseudo R-squared	0.013	0.009	0.009

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 17: Regression Results, DV: Sign a Petition

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.047 (0.040)	-0.262 (0.223)	-0.151 (0.131)
MemGovsFirmsNGOs	-0.025 (0.039)	-0.141 (0.224)	-0.081 (0.130)
ScoPrivacy	-0.074 (0.055)	-0.401 (0.301)	-0.234 (0.176)
ScoTransp	0.024 (0.051)	0.148 (0.315)	0.100 (0.180)
ScoDisplac	-0.033 (0.052)	-0.189 (0.296)	-0.105 (0.172)
ScoGeneral	-0.018 (0.051)	-0.110 (0.296)	-0.057 (0.172)
TarGovs	0.044 (0.041)	0.237 (0.217)	0.142 (0.129)
TarFirmsGovs	0.069 (0.041)	0.383 (0.221)	0.224 (0.130)
OblBind	0.070* (0.032)	0.392* (0.179)	0.232* (0.104)
OrgLargeBureau	0.029 (0.032)	0.163 (0.178)	0.091 (0.104)
Constant	0.715*** (0.058)	0.935** (0.324)	0.568** (0.189)
Observations	718	718	718
R-squared / Pseudo R-squared	0.02	0.019	0.019

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 18: Regression Results, DV: Email

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	0.029 (0.042)	0.141 (0.210)	0.083 (0.126)
MemGovsFirmsNGOs	0.039 (0.042)	0.196 (0.206)	0.120 (0.123)
ScoPrivacy	-0.054 (0.055)	-0.268 (0.278)	-0.156 (0.166)
ScoTransp	-0.013 (0.053)	-0.065 (0.280)	-0.027 (0.166)
ScoDisplac	-0.022 (0.054)	-0.115 (0.277)	-0.072 (0.164)
ScoGeneral	-0.032 (0.055)	-0.167 (0.280)	-0.098 (0.167)
TarGovs	0.004 (0.041)	0.022 (0.213)	0.018 (0.126)
TarFirmsGovs	-0.053 (0.042)	-0.259 (0.206)	-0.154 (0.124)
OblBind	0.116*** (0.035)	0.579*** (0.171)	0.348*** (0.102)
OrgLargeBureau	-0.038 (0.034)	-0.193 (0.171)	-0.120 (0.102)
Constant	0.692*** (0.059)	0.832** (0.300)	0.509** (0.179)
Observations	718	718	718
R-squared / Pseudo R-squared	0.026	0.022	0.022

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

U.K. Sample

Table 19: Regression Results, DV: Any Behavior

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.014 (0.024)	-0.065 (0.115)	-0.038 (0.069)
MemGovsFirmsNGOs	0.016 (0.024)	0.078 (0.119)	0.049 (0.071)
ScoPrivacy	0.003 (0.032)	0.017 (0.159)	0.010 (0.095)
ScoTransp	0.007 (0.032)	0.038 (0.162)	0.022 (0.097)
ScoDisplac	-0.029 (0.033)	-0.138 (0.158)	-0.084 (0.095)
ScoGeneral	-0.040 (0.031)	-0.190 (0.151)	-0.115 (0.091)
TarGovs	0.048 (0.026)	0.230 (0.126)	0.140 (0.076)
TarFirmsGovs	0.034 (0.025)	0.164 (0.121)	0.099 (0.073)
OblBind	0.055** (0.021)	0.265** (0.100)	0.161** (0.060)
OrgLargeBureau	0.001 (0.019)	0.003 (0.094)	0.002 (0.057)
Constant	0.660*** (0.033)	0.662*** (0.159)	0.410*** (0.096)
Observations	2088	2088	2088
R-squared / Pseudo R-squared	0.008	0.007	0.007

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 20: Regression Results, DV: Support (5-pt. Scale)

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.084 (0.091)	-0.148 (0.178)	-0.091 (0.103)
MemGovsFirmsNGOs	0.120 (0.083)	0.255 (0.170)	0.137 (0.097)
ScoPrivacy	0.028 (0.124)	0.021 (0.255)	0.024 (0.143)
ScoTransp	0.026 (0.121)	-0.001 (0.246)	0.009 (0.140)
ScoDisplac	-0.098 (0.118)	-0.283 (0.239)	-0.129 (0.134)
ScoGeneral	0.017 (0.111)	-0.040 (0.223)	-0.018 (0.127)
TarGovs	0.160 (0.090)	0.428* (0.179)	0.219* (0.102)
TarFirmsGovs	0.194* (0.084)	0.389* (0.167)	0.234* (0.096)
OblBind	0.234** (0.071)	0.500*** (0.144)	0.271*** (0.082)
OrgLargeBureau	-0.062 (0.071)	-0.109 (0.144)	-0.070 (0.082)
Constant	3.268*** (0.120)		
Cut1		-0.148 (0.177)	-0.091 (0.101)
Cut2		0.255 (0.171)	0.137 (0.098)
Cut3		0.021 (0.237)	0.024 (0.133)
Cut4		-0.001 (0.239)	0.009 (0.136)
Cut5		-0.283 (0.226)	-0.129 (0.128)
Observations	696	696	696
R-squared / Pseudo R-squared	0.036	0.016	0.014

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001 .

Table 21: Regression Results, DV: Support (Binary)

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.033 (0.047)	-0.137 (0.195)	-0.085 (0.121)
MemGovsFirmsNGOs	0.079 (0.045)	0.341 (0.192)	0.211 (0.119)
ScoPrivacy	-0.013 (0.061)	-0.056 (0.261)	-0.037 (0.161)
ScoTransp	-0.009 (0.062)	-0.038 (0.265)	-0.023 (0.163)
ScoDisplac	-0.079 (0.058)	-0.335 (0.247)	-0.207 (0.153)
ScoGeneral	-0.009 (0.058)	-0.039 (0.247)	-0.024 (0.152)
TarGovs	0.139** (0.046)	0.588** (0.195)	0.367** (0.120)
TarFirmsGovs	0.089 (0.046)	0.373 (0.194)	0.230 (0.120)
OblBind	0.134*** (0.038)	0.563*** (0.158)	0.350*** (0.098)
OrgLargeBureau	-0.021 (0.037)	-0.089 (0.158)	-0.057 (0.098)
Constant	0.437*** (0.065)	-0.269 (0.272)	-0.166 (0.168)
Observations	696	696	696
R-squared / Pseudo R-squared	0.045	0.033	0.033

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 22: Regression Results, DV: Petition

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	−0.045 (0.037)	−0.314 (0.254)	−0.175 (0.142)
MemGovsFirmsNGOs	−0.019 (0.035)	−0.138 (0.252)	−0.075 (0.140)
ScoPrivacy	−0.012 (0.047)	−0.080 (0.320)	−0.049 (0.180)
ScoTransp	0.006 (0.046)	0.045 (0.325)	0.023 (0.182)
ScoDisplac	0.024 (0.045)	0.175 (0.328)	0.093 (0.182)
ScoGeneral	−0.027 (0.049)	−0.178 (0.317)	−0.106 (0.179)
TarGovs	−0.014 (0.035)	−0.103 (0.255)	−0.059 (0.142)
TarFirmsGovs	−0.030 (0.037)	−0.210 (0.259)	−0.123 (0.145)
OblBind	−0.002 (0.029)	−0.015 (0.202)	−0.009 (0.113)
OrgLargeBureau	0.008 (0.029)	0.056 (0.199)	0.034 (0.111)
Constant	0.859*** (0.046)	1.797*** (0.334)	1.075*** (0.185)
Observations	696	696	696
R-squared / Pseudo R-squared	0.006	0.006	0.006

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 23: Regression Results, DV: Email

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	0.041 (0.041)	0.215 (0.216)	0.127 (0.128)
MemGovsFirmsNGOs	-0.009 (0.042)	-0.046 (0.206)	-0.026 (0.123)
ScoPrivacy	0.033 (0.051)	0.177 (0.277)	0.106 (0.163)
ScoTransp	0.009 (0.054)	0.046 (0.279)	0.029 (0.165)
ScoDisplac	-0.013 (0.053)	-0.066 (0.268)	-0.037 (0.160)
ScoGeneral	-0.052 (0.053)	-0.257 (0.260)	-0.151 (0.156)
TarGovs	-0.002 (0.043)	-0.006 (0.209)	-0.006 (0.126)
TarFirmsGovs	0.042 (0.042)	0.223 (0.216)	0.132 (0.128)
OblBind	0.029 (0.035)	0.146 (0.175)	0.088 (0.104)
OrgLargeBureau	0.006 (0.034)	0.031 (0.172)	0.019 (0.102)
Constant	0.693*** (0.056)	0.805** (0.279)	0.498** (0.167)

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

French Sample

Table 24: Regression Results, DV: Any Behavior

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.010 (0.026)	-0.043 (0.110)	-0.026 (0.068)
MemGovsFirmsNGOs	0.034 (0.025)	0.149 (0.107)	0.092 (0.066)
ScoPrivacy	0.021 (0.033)	0.093 (0.146)	0.057 (0.090)
ScoTransp	0.006 (0.033)	0.025 (0.145)	0.016 (0.089)
ScoDisplac	0.005 (0.033)	0.021 (0.143)	0.012 (0.088)
ScoGeneral	-0.044 (0.031)	-0.187 (0.132)	-0.116 (0.082)
TarGovs	-0.025 (0.025)	-0.110 (0.109)	-0.067 (0.067)
TarFirmsGovs	-0.008 (0.024)	-0.037 (0.106)	-0.022 (0.065)
OblBind	-0.023 (0.020)	-0.101 (0.088)	-0.062 (0.054)
OrgLargeBureau	-0.001 (0.020)	-0.004 (0.087)	-0.002 (0.054)
Constant	0.653*** (0.034)	0.632*** (0.150)	0.393*** (0.092)
Observations	2271	2271	2271
R-squared / Pseudo R-squared	0.005	0.004	0.004

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 25: Regression Results, DV: Support (5-point scale)

Variable	(1) Linear	(2) Ordered Logistic	(3) Ordered Probit
MemGovsFirms	-0.055 (0.085)	-0.086 (0.173)	-0.059 (0.098)
MemGovsFirmsNGOs	0.060 (0.080)	0.180 (0.160)	0.058 (0.092)
ScoPrivacy	0.152 (0.108)	0.264 (0.215)	0.177 (0.123)
ScoTransp	0.070 (0.112)	0.064 (0.218)	0.084 (0.127)
ScoDisplac	0.104 (0.109)	0.182 (0.217)	0.124 (0.123)
ScoGeneral	0.102 (0.103)	0.103 (0.207)	0.118 (0.116)
TarGovs	0.012 (0.086)	0.033 (0.170)	0.012 (0.098)
TarFirmsGovs	0.066 (0.084)	0.092 (0.168)	0.076 (0.096)
OblBind	-0.038 (0.068)	-0.060 (0.136)	-0.041 (0.078)
OrgLargeBureau	-0.101 (0.068)	-0.173 (0.135)	-0.111 (0.077)
Constant	3.263*** (0.111)		
Cutpoints:			
Cut1		-0.086 (0.167)	-0.059 (0.096)
Cut2		0.18 (0.163)	0.058 (0.095)
Cut3		0.264 (0.212)	0.177 (0.122)
Cut4		0.064 (0.219)	0.084 (0.126)
Cut5		0.182 (0.213)	0.124 (0.122)
Observations	757	757	757
R-squared / Pseudo R-squared	0.01	0.003	0.003

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 26: Regression Results, DV: Support (binary)

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.001 (0.045)	-0.004 (0.183)	-0.003 (0.114)
MemGovsFirmsNGOs	0.065 (0.045)	0.261 (0.180)	0.163 (0.112)
ScoPrivacy	0.025 (0.058)	0.102 (0.231)	0.064 (0.145)
ScoTransp	-0.057 (0.059)	-0.233 (0.242)	-0.145 (0.151)
ScoDisplac	0.020 (0.058)	0.081 (0.232)	0.051 (0.145)
ScoGeneral	-0.029 (0.057)	-0.119 (0.232)	-0.075 (0.145)
TarGovs	0.010 (0.046)	0.041 (0.187)	0.024 (0.117)
TarFirmsGovs	-0.001 (0.045)	-0.004 (0.182)	-0.004 (0.114)
OblBind	-0.008 (0.037)	-0.034 (0.148)	-0.021 (0.092)
OrgLargeBureau	-0.028 (0.037)	-0.112 (0.148)	-0.070 (0.092)
Constant	0.454*** (0.060)	-0.184 (0.242)	-0.115 (0.151)
Observations	757	757	757
R-squared / Pseudo R-squared	0.009	0.006	0.006

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 27: Regression Results, DV: Petition

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.005 (0.039)	-0.029 (0.212)	-0.019 (0.124)
MemGovsFirmsNGOs	0.040 (0.037)	0.235 (0.216)	0.132 (0.125)
ScoPrivacy	0.056 (0.050)	0.315 (0.275)	0.179 (0.161)
ScoTransp	0.049 (0.049)	0.272 (0.270)	0.155 (0.158)
ScoDisplac	0.060 (0.051)	0.336 (0.284)	0.189 (0.165)
ScoGeneral	0.014 (0.052)	0.074 (0.275)	0.039 (0.163)
TarGovs	-0.041 (0.039)	-0.234 (0.219)	-0.133 (0.128)
TarFirmsGovs	-0.001 (0.037)	-0.003 (0.217)	-0.003 (0.125)
OblBind	-0.013 (0.031)	-0.077 (0.177)	-0.046 (0.103)
OrgLargeBureau	0.001 (0.031)	0.004 (0.177)	0.003 (0.103)
Constant	0.743*** (0.054)	1.068*** (0.294)	0.662*** (0.172)
Observations	757	757	757
R-squared / Pseudo R-squared	0.007	0.007	0.007

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 28: Regression Results, DV: Email

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.018 (0.043)	-0.081 (0.194)	-0.047 (0.118)
MemGovsFirmsNGOs	-0.002 (0.041)	-0.010 (0.189)	-0.005 (0.115)
ScoPrivacy	-0.018 (0.054)	-0.090 (0.264)	-0.052 (0.159)
ScoTransp	-0.023 (0.053)	-0.109 (0.254)	-0.065 (0.153)
ScoDisplac	-0.055 (0.055)	-0.259 (0.260)	-0.158 (0.157)
ScoGeneral	-0.103 (0.053)	-0.470 (0.244)	-0.286 (0.148)
TarGovs	-0.039 (0.042)	-0.182 (0.192)	-0.113 (0.116)
TarFirmsGovs	-0.020 (0.042)	-0.095 (0.195)	-0.055 (0.118)
OblBind	-0.033 (0.034)	-0.155 (0.157)	-0.093 (0.095)
OrgLargeBureau	0.012 (0.034)	0.054 (0.158)	0.034 (0.096)
Constant	0.757*** (0.056)	1.120*** (0.272)	0.687*** (0.164)
Observations	757	757	757
R-squared / Pseudo R-squared	0.01	0.008	0.008

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

German Sample

Table 29: Regression Results, DV: Any Behavior

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	−0.043 (0.025)	−0.198 (0.116)	−0.122 (0.071)
MemGovsFirmsNGOs	−0.026 (0.024)	−0.118 (0.112)	−0.071 (0.068)
ScoPrivacy	−0.042 (0.034)	−0.189 (0.154)	−0.115 (0.094)
ScoTransp	0.001 (0.034)	0.007 (0.158)	0.008 (0.096)
ScoDisplac	−0.021 (0.033)	−0.096 (0.150)	−0.059 (0.091)
ScoGeneral	−0.021 (0.032)	−0.097 (0.146)	−0.058 (0.089)
TarGovs	0.039 (0.025)	0.181 (0.116)	0.111 (0.071)
TarFirmsGovs	0.010 (0.025)	0.047 (0.113)	0.029 (0.069)
OblBind	0.084*** (0.020)	0.381*** (0.091)	0.234*** (0.055)
OrgLargeBureau	−0.011 (0.021)	−0.053 (0.095)	−0.035 (0.058)
Constant	0.653*** (0.036)	0.640*** (0.164)	0.397*** (0.100)
Observations	2154	2154	2154
R-squared / Pseudo R-squared	0.012	0.009	0.009

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 30: Regression Results, DV: Support (5-pt. Scale)

Variable	(1) Linear	(2) Ordered Logistic	(3) Ordered Probit
MemGovsFirms	0.007 (0.089)	0.005 (0.168)	-0.020 (0.095)
MemGovsFirmsNGOs	-0.049 (0.094)	-0.078 (0.180)	-0.046 (0.101)
ScoPrivacy	0.123 (0.120)	0.261 (0.231)	0.107 (0.130)
ScoTransp	-0.068 (0.120)	-0.114 (0.228)	-0.090 (0.128)
ScoDisplac	0.021 (0.122)	0.032 (0.236)	0.007 (0.132)
ScoGeneral	0.005 (0.122)	-0.019 (0.233)	-0.017 (0.131)
TarGovs	0.036 (0.092)	0.107 (0.173)	0.068 (0.098)
TarFirmsGovs	0.076 (0.090)	0.141 (0.167)	0.091 (0.096)
OblBind	0.016 (0.075)	0.041 (0.142)	0.018 (0.080)
OrgLargeBureau	-0.068 (0.075)	-0.133 (0.141)	-0.068 (0.080)
Constant	3.507*** (0.128)		
<i>Cutpoints</i>			
Cut1		0.005 (0.171)	-0.02 (0.098)
Cut2		-0.078 (0.172)	-0.046 (0.097)
Cut3		0.261 (0.225)	0.107 (0.127)
Cut4		-0.114 (0.219)	-0.09 (0.124)
Cut5		0.032 (0.226)	0.007 (0.128)
Observations	732	732	732
R-squared / Pseudo R-squared	0.007	0.003	0.003

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 31: Regression Results, DV: Support (binary)

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	0.029 (0.044)	0.126 (0.192)	0.079 (0.118)
MemGovsFirmsNGOs	-0.035 (0.044)	-0.148 (0.189)	-0.091 (0.116)
ScoPrivacy	0.110 (0.056)	0.490 (0.252)	0.300 (0.154)
ScoTransp	-0.005 (0.057)	-0.019 (0.238)	-0.012 (0.148)
ScoDisplac	0.023 (0.058)	0.098 (0.246)	0.061 (0.152)
ScoGeneral	0.005 (0.059)	0.021 (0.248)	0.015 (0.154)
TarGovs	0.024 (0.044)	0.101 (0.188)	0.064 (0.116)
TarFirmsGovs	0.040 (0.045)	0.172 (0.194)	0.107 (0.120)
OblBind	0.027 (0.036)	0.118 (0.154)	0.071 (0.095)
OrgLargeBureau	-0.033 (0.036)	-0.140 (0.155)	-0.089 (0.096)
Constant	0.583*** (0.063)	0.333 (0.267)	0.209 (0.165)
Observations	732	732	732
R-squared / Pseudo R-squared	0.014	0.011	0.011

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 32: Regression Results, DV: Petition

Variable	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	-0.047 (0.040)	-0.262 (0.223)	-0.151 (0.131)
MemGovsFirmsNGOs	-0.025 (0.039)	-0.141 (0.224)	-0.081 (0.130)
ScoPrivacy	-0.074 (0.055)	-0.401 (0.301)	-0.234 (0.176)
ScoTransp	0.024 (0.051)	0.148 (0.315)	0.100 (0.180)
ScoDisplac	-0.033 (0.052)	-0.189 (0.296)	-0.105 (0.172)
ScoGeneral	-0.018 (0.051)	-0.110 (0.296)	-0.057 (0.172)
TarGovs	0.044 (0.041)	0.237 (0.217)	0.142 (0.129)
TarFirmsGovs	0.069 (0.041)	0.383 (0.221)	0.224 (0.130)
OblBind	0.070* (0.032)	0.392* (0.179)	0.232* (0.104)
OrgLargeBureau	0.029 (0.032)	0.163 (0.178)	0.091 (0.104)
Constant	0.715*** (0.058)	0.935** (0.324)	0.568** (0.189)
Observations	718	718	718
R-squared / Pseudo R-squared	0.02	0.003	0.003

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Table 33: Regression Results, DV: Email

	(1) Linear	(2) Logistic	(3) Probit
MemGovsFirms	0.029 (0.044)	0.130 (0.194)	0.077 (0.119)
MemGovsFirmsNGOs	0.032 (0.043)	0.146 (0.193)	0.087 (0.118)
ScoPrivacy	0.086 (0.055)	0.386 (0.246)	0.236 (0.150)
ScoTransp	0.054 (0.056)	0.235 (0.243)	0.145 (0.150)
ScoDisplac	0.112* (0.056)	0.511* (0.259)	0.311* (0.157)
ScoGeneral	-0.011 (0.056)	-0.044 (0.234)	-0.027 (0.145)
TarGovs	-0.009 (0.045)	-0.043 (0.205)	-0.028 (0.124)
TarFirmsGovs	-0.046 (0.044)	-0.205 (0.197)	-0.125 (0.120)
OblBind	-0.020 (0.035)	-0.088 (0.158)	-0.055 (0.097)
OrgLargeBureau	0.006 (0.035)	0.027 (0.158)	0.018 (0.097)
Constant	0.618*** (0.061)	0.486 (0.266)	0.305 (0.163)
Observations	732	732	732
R-squared / Pseudo R-squared	0.014	0.011	0.011

Notes: Standard errors in parentheses. *p<0.05, **p<0.01, ***p<0.001

Conjoint Survey and Translations

Survey Screenshot

Proposal 1	Dimension	Proposal 2
National governments and private firms	Members	National governments and private firms
General standards requiring non-discrimination, data privacy, transparent disclosure of algorithms, and safeguards against displacement of human workers	Scope	Specific standards requiring data privacy
Government agencies	Targets of Regulation	Private firms
Binding and mandatory	Obligation	Non-binding and voluntary
Secretariat with a small staff	Organization	International bureaucracy with a large staff

Which AI governance proposal do you prefer?

Proposal 1

Proposal 2

Figure 16: Example of a conjoint task shown to respondents

French Version of the Survey

Conjoint task

Nombreux sont ceux qui affirment qu'une réglementation efficace de l'IA nécessitera une collaboration internationale. Toutefois, la collaboration pourrait prendre de nombreuses formes. Nous allons maintenant vous demander de comparer quelques propositions qui varient selon : Les membres de l'initiative de régulation, Si l'initiative vise des utilisations spécifiques de l'IA ou à des usages généraux, Si la conformité est juridiquement contraignante ou volontaire, Les cibles de la régulation, Si on crée une petite ou une grande organisation internationale pour gérer le reporting et d'autres activités.

Membres

- Gouvernements nationaux
- Gouvernements nationaux et entreprises privées
- Gouvernements nationaux, entreprises privées et organisations non gouvernementales

Portée

- Normes spécifiques exigeant la non-discrimination
- Normes spécifiques exigeant la confidentialité des données
- Normes spécifiques exigeant une divulgation transparente des algorithmes
- Normes spécifiques exigeant des garanties contre le déplacement d'ouvriers humains
- Normes générales exigeant la non-discrimination, la confidentialité des données, la divulgation transparente des algorithmes et des garanties contre le déplacement de ouvriers humains

Cibles

- Entreprises privées
- Organismes gouvernementaux
- Entreprises privées et organismes gouvernementaux

Obligation

- Non contraignant et volontaire
- Contraignant et obligatoire

Organisation

- Une bureaucratie internationale avec un personnel important
- Secrétariat avec un personnel réduit

Randomize concerns

Récemment, une attention considérable a été accordée aux risques et aux avantages du développement de l'intelligence artificielle (IA) par les entreprises privées. Bien que cette technologie soit susceptible d'améliorer la productivité humaine dans toute une série d'industries, il reste un certain nombre de préoccupations.

Une préoccupation majeure dans tous les secteurs est [randomiser : **la transparence des algorithmes d'IA** – les données utilisées pour entraîner les modèles ne sont pas divulguées et on ne comprend pas les bases de leur fonctionnement. /**la confidentialité des données** – de vastes réserves d'informations sont utilisées pour créer des outils d'IA mais les personnes dont les données ont été extraites n'ont pas consenti à leur utilisation /**les préjugés et la discrimination** – les données utilisées pour développer l'IA proviennent de décisions humaines sujettes aux préjugés et à l'intolérance./**déplacement des ouvriers humains** – Les outils d'IA simplifient les tâches compliquées et donc chassent les gens des emplois précieux.]

Outcome questions

- Si la proposition que vous venez de sélectionner était sur la table, êtes-vous favorable ou opposé(e) à la création de ce type d'institution internationale pour réglementer l'IA ?
[Je m'y oppose fermement, Je m'y oppose, Ne soutiens ni m'oppose, Je la soutiens, Je la soutiens fortement]
- Si la proposition que vous venez de sélectionner était sur la table, seriez-vous disposé(e) à signer la pétition suivante, qui sera envoyée aux représentants au Parlement et à la présidence, plaident pour que la France soutienne la collaboration internationale dans la réglementation de l'IA ?

Nous, soussignés, exhortons par la présente le Parlement et le Président à participer à un effort de collaboration avec d'autres pays pour établir une gouvernance internationale de l'intelligence artificielle (IA). De nombreux initiés de l'industrie et experts universitaires nous ont mis en garde contre la possibilité d'une utilisation abusive de cette puissante et des technologies émergentes. Ces préoccupations incluent, sans s'y limiter, la possibilité d'une désinformation généralisée ainsi que des ingérences électorales, des invasions de la vie privée à une échelle sans précédent, des biais algorithmiques et de la discrimination, ainsi que d'une surveillance accrue de la part des gouvernements, portant atteinte aux libertés universelles et aux droits de l'homme. Certains experts ont même prédit des conséquences encore plus catastrophiques pour la démocratie et le maintien de l'ordre social.

Étant donné que bon nombre d'entre ces problèmes ont une portée internationale et que les solutions ne sont viables que si les gouvernements du monde se coordonnent pour établir et appliquer des règles et des lignes directrices, nous exhortons nos responsables gouvernementaux à donner la priorité à la création d'un régime international de réglementation de l'IA. La France, compte tenu de sa position de leader dans le développement de la technologie de l'IA, est dans une position de force pour appeler à

l'adoption universelle de pratiques et de règles minimisant les risques pour une utilisation appropriée de l'IA. La France peut utiliser sa position de leader dans l'industrie pour encourager et faciliter l'adoption de règles qui équilibrent les incitations à l'innovation avec des garde-fous contre bon nombre des préoccupations soulevées à propos de l'IA.

- Si la proposition que vous venez de sélectionner était sur la table, seriez-vous prêt à utiliser le modèle de courrier électronique suivant pour contacter votre représentant au Parlement et exhorter la France à soutenir la création d'une institution dotée des caractéristiques que vous venez de lire ?

"Cher __ : Je suis un électeur qui travaille dans une industrie qui utilise la technologie de l'IA. Je crois aux préoccupations concernant (sélectionnez toutes les réponses qui s'appliquent) [les biais algorithmiques ; la désinformation ; la confidentialité des données ; le remplacement des ouvriers humains] sont tout à fait justifiés et nécessitent une solution législative. Je vous écris pour vous demander de soutenir et de donner la priorité à une législation visant à résoudre ces problèmes possibles le plus rapidement possible, compte tenu du développement rapide de cette technologie.

Sincèrement, __ "

German Version of the Survey

Conjoint task

Viele argumentieren, dass eine erfolgreiche KI-Regulierung internationale Zusammenarbeit erfordert. Allerdings gibt es vielfältige Formen der Zusammenarbeit. Wir bitten Sie nun, einige Vorschläge zu vergleichen, die sich in folgenden Punkten unterscheiden: Die Mitglieder der Regulierungsinitiative, Ob gezielt auf bestimmte KI-Anwendungen ausgerichtet oder allgemein, Die Ziele der Regulierung, Ob eine kleine oder große internationale Organisa-

tion gegründet wird, um die Berichterstattung und andere Aktivitäten zu verwalten, Ob Compliance gesetzlich verpflichtend oder freiwillig ist

Mitglieder der Entscheidungsgremien

- Nationale Regierungen
- Nationale Regierungen und private Unternehmen
- Nationale Regierung, Privatunternehmen und Nichtregierungsorganisationen

Umfang der Entscheidung

- Spezifische Standards, die Nichtdiskriminierung erfordern
- Spezifische Standards, die den Datenschutz erfordern
- Spezifische Standards, die eine transparente Offenlegung von Algorithmen erfordern
- Spezifische Standards, die Schutzmaßnahmen gegen die Vertreibung menschlicher Arbeitskräfte erfordern
- Allgemeine Standards, die Nichtdiskriminierung, Datenschutz, transparente Offenlegung von Algorithmen und Schutzmaßnahmen gegen die Verdrängung menschlicher Arbeitskräfte erfordern

Ziele

- Private Firmen
- Regierungsbehörden
- Privatunternehmen und Regierungsbehörden

Verbindlichkeit der Entscheidung

- Unverbindlich und freiwillig

- Verbindlich und verpflichtend

Organisation der Entscheidungsgremien

- Internationale Bürokratie mit großem Personalbestand
- Sekretariat mit kleinem Personal

Randomize concerns

In letzter Zeit haben sowohl die Risiken als auch die Vorteile der Entwicklung künstlicher Intelligenz (KI) durch private Unternehmen große Aufmerksamkeit erhalten. Obwohl diese Technologie die menschliche Produktivität in einer Reihe von Branchen wahrscheinlich steigern wird, bestehen weiterhin Bedenken. Ein Hauptanliegen aller Branchen ist [randomize: **Transparenz der KI-Algorithmen** – Die zum Training der Modelle verwendeten Daten werden nicht offengelegt und die Grundlagen ihrer Funktionsweise werden nicht verstanden / **Datenprivatsphäre** – Riesige Informationsbestände werden zur Erstellung von KI-Tools verwendet, aber die Personen, von denen die Daten gesammelt wurden, haben ihrer Verwendung nicht zugestimmt / **Voreingenommenheit und Diskriminierung** – Die zur Entwicklung der KI verwendeten Daten stammen aus menschlichen Entscheidungen, die zu Vorurteilen und Intoleranz neigen./**die Vertreibung menschlicher Arbeitskräfte** – KI-Tools machen komplizierte Aufgaben trivial und augenblicklich und verdrängen daher Menschen von wertvollen Jobs.]

Outcome questions

- Ganz allgemein, würden Sie die Schaffung einer internationalen Institution zur Regulierung von KI ablehnen oder unterstützen? [Entschieden ablehnen, Ablehnen, Weiß ich nicht, Unterstützen, Stark Unterstützen]
- Wären Sie bereit, die folgende Petition zu unterzeichnen, die an Mitglieder des Bundestages und der Bundesregierung geschickt wird und sich dafür einsetzt, dass die

Bundesrepublik Deutschland die Gründung einer Institution mit den von Ihnen gerade gelesenen Merkmalen unterstützen?

Petition zur Einführung internationaler Regeln zur Regulierung künstlicher Intelligenz
"Wir, die Unterzeichner, fordern hiermit den Bundeskanzler und die Mitglieder des Bundestags auf, sich an einer gemeinsamen Anstrengung mit anderen Nationen zu beteiligen, um eine internationale Regulierung für künstliche Intelligenz (KI) zu etablieren. Viele Brancheninsider und wissenschaftliche Experten haben vor der Möglichkeit eines Missbrauchs dieser leistungsstarken und aufstrebenden Technologie gewarnt. Zu diesen Bedenken zählen unter anderem die Möglichkeit weitverbreiteter Fehlinformationen und Wahlbeeinträchtigungen, Eingriffe in die Privatsphäre in beispiellosem Ausmaß, algorithmische Voreingenommenheit und Diskriminierung sowie eine verstärkte Überwachung durch Regierungen, die die allgemeinen Freiheiten und Menschenrechte verletzen. Einige haben sogar katastrophalere Auswirkungen auf die Demokratie und die Aufrechterhaltung der sozialen Ordnung vorhergesagt.

Angesichts der Tatsache, dass viele dieser Probleme von internationaler Tragweite sind und Lösungen nur realisierbar sind, wenn sich die Regierungen der Welt bei der Festlegung und Durchsetzung von Regeln und Richtlinien abstimmen, fordern wir unsere Regierung dringend auf, der Schaffung eines internationalen KI-Regulierungssystems Vorrang einzuräumen. Deutschland ist in einer starken Position, um auf die allgemeine Einführung risikominimierender Praktiken und Regeln für den angemessenen Einsatz von KI zu drängen. Deutschland kann seine branchenführende Position nutzen, um die Einführung von Regeln zu fördern und zu erleichtern, die einen Ausgleich zwischen Innovationsanreizen und Schutzmaßnahmen gegen viele der im Zusammenhang mit KI geäußerten Bedenken schaffen."

- Wären Sie bereit, die folgende E-Mail-Vorlage zu verwenden, um Ihre Vertreterin oder Ihren Vertreter im Bundestag zu kontaktieren und Deutschland aufzufordern, die Grün-

dung einer Institution mit den von Ihnen gerade gelesenen Funktionen zu unterstützen?

"Sehr geehrter Herr Abgeordneter, sehr geehrte Frau Abgeordnete ___:

Ich bin eine Wählerin oder ein Wähler und arbeite in einer Branche, die KI-Technologie nutzt. Ich glaube, die Bedenken hinsichtlich (alles Zutreffende auswählen) [algorithmmische Verzerrung; Fehlinformationen; Datenprivatsphäre; Ersatz menschlicher Arbeitskräfte] sind sehr berechtigt und erfordern eine gesetzgeberische Lösung. Ich schreibe, um Sie zu bitten, der Gesetzgebung, die darauf abzielt, diese möglichen Probleme angesichts der rasanten Entwicklung dieser Technologie so schnell wie möglich anzugehen, Priorität einzuräumen und sie zu unterstützen.

Ihre Wählerin oder Ihr Wähler, ___"